
2 Frequency-Domain Analysis

Electrical engineers live in the two worlds, so to speak, of time and frequency.
Frequency-domain analysis is an extremely valuable tool to the communi-
cations engineer, more so perhaps than to other systems analysts. Since the
communications engineer is concerned primarily with signal bandwidths and
signal locations in the frequency domain, rather than with transient analysis,
the essentially steady-state approach of the (complex exponential) Fourier
series and transforms is used rather than the Laplace transform.

2.1 Mathematical Background

2.1. Euler’s formula :

ejθ = cos θ + j sin θ. (1)

cos (x) = Re
{
ejx
}

=
1

2

(
ejx + e−jx

)
(2)

sin (x) = Im
{
ejx
}

=
1

2j

(
ejx − e−jx

)
. (3)

2.2. We can use cosx = 1
2

(
ejx + e−jx

)
and sinx = 1

2j

(
ejx − e−jx

)
to derive

many trigonometric identities. See Example 2.4.

Example 2.3. Use the Euler’s formula to show that d
dx sinx = cosx.

Example 2.4. Use the Euler’s formula to show that cos2(x) = 1
2 (cos(2x) + 1).
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2.5. Similar technique gives

(a) cos(−x) = cos(x),

(b) cos
(
x− π

2

)
= sin(x),

(c) sin2x = 1
2 (1− cos (2x))

(d) sin(x) cos(x) = 1
2 sin(2x), and

(e) the product-to-sum formula

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) . (4)

2.2 Continuous-Time Fourier Transform

Definition 2.6. The (direct) Fourier transform of a signal g(t) is defined
by

G(f) =

+∞∫
−∞

g(t)e−j2πftdt (5)

This provides the frequency-domain description of g(t). Conversion back to
the time domain is achieved via the inverse (Fourier) transform:

g (t) =

∞∫
−∞

G (f) ej2πftdf (6)

• We may combine (5) and (6) into one compact formula:

∞∫
−∞

G (f) ej2πftdf = g (t)
F−−⇀↽−−
F−1

G (f) =

∞∫
−∞

g (t) e−j2πftdt. (7)

• We may simply write G = F {g} and g = F−1 {G}.

• Note that the area under the curve of a function in one domain is the
same as its value at 0 in another domain:

G(0) =

∫ ∞
−∞

g(t)dt and g(0) =

∫ ∞
−∞

G(f)df. (8)

6



2.7. In some references5, the (direct) Fourier transform of a signal g(t) is
defined by

Ĝ(ω) =

∫ +∞

−∞
g(t)e−jωtdt (9)

In which case, we have

1

2π

∞∫
−∞

Ĝ (ω) ejωtdω = g (t)
F−−⇀↽−−
F−1

Ĝ (ω) =

∞∫
−∞

g (t) e−jωtdt (10)

• In MATLAB, these calculations are carried out via the commands fourier
and ifourier.

• Note that Ĝ(0) =
∞∫
−∞

g(t)dt and g(0) = 1
2π

∞∫
−∞

Ĝ(ω)dω.

• The relationship between G(f) in (5) and Ĝ(ω) in (9) is given by

G(f) = Ĝ(ω)
∣∣∣
ω=2πf

(11)

Ĝ(ω) = G(f)|f= ω
2π

(12)

Before we introduce our first but crucial transform pair in Example 2.13
which will involve rectangular function, we want to introduce the indicator
function which gives compact representation of the rectangular function.
We will see later that the transform of the rectangular function gives a sinc
function. Therefore, we will also introduce the sinc function as well.

Definition 2.8. An indicator function gives only two values: 0 or 1. It
is usually written in the form

1[some condition(s) involving t].

Its value at a particular t is one if and only if the condition(s) inside is
satisfied for that t.

5MATLAB uses this definition.
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Alternatively, we can use a set to specify the values of t at which the indi-
cator function gives the value 1:

1A(t) =

{
1, t ∈ A,
0, t /∈ A.

In particular, the set A can be some intervals:

1[−a,a](t) =

{
1, −a ≤ t ≤ a,
0, otherwise,

and

1[−a,b](t) =

{
1, −a ≤ t ≤ b,
0, otherwise.

Example 2.9. Carefully sketch the function g(t) = 1 [|t| ≤ 5]

Definition 2.10. Rectangular pulse [3, Ex 2.21 p 45]:

•
∏

(t) = 1 [|t| ≤ 0.5] = 1[−0.5,0.5] (t)

◦ This is a pulse of unit height and unit width, centered at the origin.
Hence, it is also known as the unit gate function rect (t) [5, p 78].

◦ In [3], the values of the pulse
∏

(t) at−0.5 and 0.5 are not specified.
However, in [5], these values are defined to be 0.5.

◦ In MATLAB, the function rectangularPulse(t) can be used to pro-
duce6 the unit gate function above. More generally, we can produce
a rectangular pulse whose rising edge is at a and falling edge is at
b via rectangularPulse(a,b,t).

•
∏(

t
T0

)
= 1

[
|t| ≤ T0

2

]
= 1[−T02 ,

T0
2 ] (t)

◦ Observe that T0 is the width of the pulse.

6Note that rectangularPulse(-0.5) and rectangularPulse(0.5) give 0.5 in MATLAB.
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Definition 2.11. The sinc function

sinc(x) ≡ (sinx)/x (13)

is plotted in Figure 3.

sinc function

50

0  2-

1

-0.2172

0.1284

-0.0913

sinc ݔ

ݔ/െ1ݔ/1

ݔ

cos ݔ sin ݔ

Figure 3: Sinc function

• This function plays an important role in signal processing. It is also
known as the filtering or interpolating function.

◦ The full name of the function is “sine cardinal”7.

• Using L’Hôpital’s rule, we find lim
x→0

sinc(x) = 1.

• sinc(x) is the product of an oscillating signal sin(x) (of period 2π) and
a monotonically decreasing function 1/x . Therefore, sinc(x) exhibits
sinusoidal oscillations of period 2π, with amplitude decreasing contin-
uously as 1/x.

• Its zero crossings are at all non-zero integer multiples of π.
7which corresponds to the Latin name sinus cardinalis. It was introduced by Woodward in his 1952

paper “Information theory and inverse probability in telecommunication” [12], in which he noted that it
“occurs so often in Fourier analysis and its applications that it does seem to merit some notation of its
own”
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Definition 2.12. Normalized sinc function:
In MATLAB and in many standard textbooks such as [3, p 37], [14, eq.

2.64], and [12], the function sinc(x) is defined as

sin(πx)

πx
. (14)

• Its zero crossings are at non-zero integer values of its argument as shown
in Figure 4.
Normalized sinc function

81

1 2-1

1

2-ݔ

sinc ݔ ൌ
sin ݔ
ݔ

Its zero crossings are at non-zero integer values of its argument.

Figure 4: Normalized sinc function

• The “normalized” part of the name is added to distinguish it from (13)
which is unnormalized .

2.13. Rectangular function and sinc function as a Fourier transform pair:

1 [|t| ≤ a]
F−−⇀↽−−
F−1

sin(2πfa)

πf
= 2a sinc(2πfa) (15)

The right half of Figure 5 illustrates (15). By setting a = T0/2, we have

1
[
|t| ≤ T0

2

] F−−⇀↽−−
F−1

T0 sinc(πT0f). In particular, when T0 = 1, we have

rect (t)
F−−⇀↽−−
F−1

sinc(πf).

The Fourier transform of the unit gate function is the normalized sinc func-
tion.
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Figure 5: Fourier transform of sinc and rectangular functions

Observe that

(a) The height of the sinc function’s peak is the same as the area under
the rectangular function.

• This follows from (8).

(b) The first zero crossing of the sinc function occurs at 1/(width of the
rectangular function).

Example 2.14.

Practice Problems
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Definition 2.15. The (Dirac) delta function or (unit) impulse func-
tion is denoted by δ(t). It is usually depicted as a vertical arrow at the
origin. Note that δ(t) is not8 a true function; it is undefined at t = 0. We
define δ(t) as a generalized function which satisfies the sampling property
(or sifting property) ∫ ∞

−∞
g(t)δ(t)dt = g(0) (16)

for any function g(t) which is continuous at t = 0.

• In this way, the delta “function” has no mathematical or physical mean-
ing unless it appears under the operation of integration.

• Intuitively we may visualize δ(t) as an infinitely tall, infinitely narrow
rectangular pulse of unit area: lim

ε→0

1
ε1
[
|t| ≤ ε

2

]
.

2.16. Properties of δ(t):

• δ(t) = 0 for t 6= 0.
δ(t− T ) = 0 for t 6= T .

•
∫
A δ(t)dt = 1A(0).

(a)
∫∞
−∞ δ(t)dt = 1.

(b)
∫
{0} δ(t)dt = 1.

(c)
∫ x
−∞ δ(t)dt = 1[0,∞)(x). Hence, we may think of δ(t) as the “deriva-

tive” of the unit step function U(t) = 1[0,∞)(x) [13, Defn 3.13 p
126].

•
∫∞
−∞ g(t)δ(t− c)dt = g(c) for g continuous at c. In fact, for any ε > 0,∫ c+ε

c−ε
g(t)δ(t− c)dt = g(c).

• Convolution9 property:

(δ ∗ g)(t) = (g ∗ δ)(t) =

∫ ∞
−∞

g(τ)δ(t− τ)dτ = g(t) (17)

where we assume that g is continuous at t.
8The δ-function is a distribution, not a function. In spite of that, it’s always called δ-function.
9See Definition 2.37.
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• Factoring a constant a out of the δ-function means scaling it by 1
|a| :

δ(at) =
1

|a|
δ(t). (18)

In particular,

δ(ω) = =
1

2π
δ(f) (19)

and

δ(ω − ω0) = δ(2πf − 2πf0) =
1

2π
δ(f − f0), (20)

where ω = 2πf and ω0 = 2πf0.

Example 2.17.
2∫
−1

δ (t)dt = and
2∫

1

δ (t)dt = .

Example 2.18.
2∫

0

δ (t)dt =

Example 2.19. δ(t)
F−−⇀↽−−
F−1

1.

Example 2.20. ej2πf0t
F−−⇀↽−−
F−1

δ (f − f0).

Example 2.21. ejω0t
F−−⇀↽−−
F−1

2πδ (ω − ω0).

Example 2.22. ej4πt
F−−⇀↽−−
F−1
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Example 2.23. cos(200πt)
F−−⇀↽−−
F−1

2.24. cos(2πf0t)
F−−⇀↽−−
F−1

1
2 (δ (f − f0) + δ (f + f0)).

Example 2.25. cos(200t)
F−−⇀↽−−
F−1

Example 2.26. cos (200πt) + cos (400πt)
F−−⇀↽−−
F−1

Example 2.27. cos (t)− 1
3 cos (3t) + 1

5 cos (5t)
F−−⇀↽−−
F−1

Fourier transform: Example

1

݃ ݐ ൌ cos ݐ െ
1
3 cos ݐ3 ൅

1
5 cos ݐ5

f

1
2

1
2

െ
1
6െ

1
6

1
10

1
10

t

t

Example 2.28. cos2 (200πt)
F−−⇀↽−−
F−1

15



Example 2.29. cos (200πt)× cos (400πt)
F−−⇀↽−−
F−1

2.30. Conjugate symmetry10: If g(t) is real-valued, then G(−f) =
(G(f))∗

(a) Even amplitude symmetry: |G (−f)| = |G (f)|

(b) Odd phase symmetry: ∠G (−f) = −∠G (f)

Observe that if we know G(f) for all f positive, we also know G(f) for
all f negative. Interpretation: Only half of the spectrum contains all
of the information. Positive-frequency part of the spectrum contains all
the necessary information. The negative-frequency half of the spectrum can
be determined by simply complex conjugating the positive-frequency half of
the spectrum.

Furthermore,

(a) If g(t) is real and even, then so is G(f).

(b) If g(t) is real and odd, then G(f) is pure imaginary and odd.

10Hermitian symmetry in [3, p 48] and [9, p 17 ].
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2.31. Shifting properties

• Time-shift :

g (t− t1)
F−−⇀↽−−
F−1

e−j2πft1G (f)

◦ Note that |e−j2πft1| = 1. So, the spectrum of g (t− t1) looks exactly
the same as the spectrum of g(t) (unless you also look at their
phases).

• Frequency-shift (or modulation):

ej2πf1tg (t)
F−−⇀↽−−
F−1

G (f − f1)

2.32. Let g(t), g1(t), and g2(t) denote signals with G(f), G1(f), and G2(f)
denoting their respective Fourier transforms.

(a) Superposition theorem (linearity):

a1g1(t) + a2g2(t)
F−−⇀↽−−
F−1

a1G1(f) + a2G2(f).

(b) Scale-change theorem (scaling property [5, p 88]; reciprocal spreading
[3, p 46]):

g(at)
F−−⇀↽−−
F−1

1

|a|
G

(
f

a

)
. (21)

• The function g(at) represents the function g(t) compressed in time
by a factor a (when |a| > 1).

• The function G(f/a) represents the function G(f) expanded in
frequency by the same factor a.
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• The scaling property says that

◦ if we “squeeze” a function in t, its Fourier transform “stretches
out” in f ,

◦ it is not possible to arbitrarily concentrate a function and its
Fourier transform simultaneously,

◦ generally speaking, the more concentrated g(t) is, the more
spread out its Fourier transform G(f) must be.

This trade-off can be formalized in the form of an uncertainty prin-
ciple. See also 2.45 and 2.46.

• Intuitively, we understand that compression in time by a factor
a means that the signal is varying more rapidly by the same fac-
tor. To synthesize such a signal, the frequencies of its sinusoidal
components must be increased by the factor a, implying that its
frequency spectrum is expanded by the factor a.
Similarly, a signal expanded in time varies more slowly; hence, the
frequencies of its components are lowered, implying that its fre-
quency spectrum is compressed.

(c) Duality theorem (Symmetry Property [5, p 86]):

G(t)
F−−⇀↽−−
F−1

g(−f).

• In words, for any result or relationship between g(t) and G(f),
there exists a dual result or relationship, obtained by interchanging
the roles of g(t) and G(f) in the original result (along with some
minor modifications arising because of a sign change).

In particular, if the Fourier transform of g(t) is G(f), then the
Fourier transform of G(f) with f replaced by t is the original time-
domain signal with t replaced by −f .

• If we use the ω-definition (9), we get a similar relationship with an
extra factor of 2π:

Ĝ(t)
F−−⇀↽−−
F−1

2πg(−ω).
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Example 2.33. Let’s try to use the scale-change theorem to double-check
the Fourier transform of a simple function. Consider the function x(t) =
g(at) where

g(t) = ej2πf0t.

Note that g(t) is simply a complex exponential function at frequency f0.
From Example 2.20, its Fourier transform G(f) is simply δ(f − f0).

(a) From x(t) = g(at) = ej2πf0(at), by grouping the factor a with f0, we get

x(t) = ej2π(af0)t.

Therefore, x(t) is a complex exponential function at frequency af0. As
in Example 2.20, its Fourier transform is

X(f) = δ(f − af0).

(b) Alternatively, we can also apply the scale-change theorem. From x(t) =

g(at), we know that X(f) = 1
|a|G

(
f
a

)
. Plugging in G(f) = δ(f − f0),

we get

X(f) =
1

|a|
δ

(
f

a
− f0

)
=

1

|a|
δ

(
1

a
(f − af0)

)
.

Now, recall, from 2.16 that, factoring a constant α out of the δ-function
means scaling it by 1

|α| . Here, the constant is α = 1
a . Therefore,

X(f) =
1

|a|
1∣∣1
a

∣∣δ (f − af0) = δ (f − af0) .

Exercise 2.34. Similar to Example 2.33, one can also try to apply the
scale-change theorem to show that

x(t) = cos(2πaf0t)
F−−⇀↽−−
F−1

1

2
(δ(f − af0) + δ(f + af0)) .

Example 2.35. From Example 2.13, we know that

1 [|t| ≤ a]
F−−⇀↽−−
F−1

2a sinc (2πaf) (22)

By the duality theorem, we have

2a sinc(2πat)
F−−⇀↽−−
F−1

1[| − f | ≤ a],
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which is the same as

sinc(2πf0t)
F−−⇀↽−−
F−1

1

2f0
1[|f | ≤ f0]. (23)

Both transform pairs are illustrated in Figure 6.





-0.2172

0.1284

-0.0913

Duality Theorem

Figure 6: Duality theorem: rectangular and sinc functions

Example 2.36. Let’s try to derive the time-shift property from the frequency-
shift property. We start with an arbitrary function g(t). Next we will define
another function x(t) by setting X(f) to be g(f). Note that f here is just
a dummy variable; we can also write X(t) = g(t). Applying the duality

theorem to the transform pair x(t)
F−−⇀↽−−
F−1

X(f), we get another transform

pair X(t)
F−−⇀↽−−
F−1

x(−f). The LHS is g(t); therefore, the RHS must be G(f).

This implies G(f) = x(−f). Next, recall the frequency-shift property:

ej2πctx (t)
F−−⇀↽−−
F−1

X (f − c) .

The duality theorem then gives

X (t− c)
F−−⇀↽−−
F−1

ej2πc−fx (−f) .
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Replacing X(t) by g(t) and x(−f) by G(f), we finally get the time-shift
property.

Definition 2.37. The convolution of two signals, g1(t) and g2(t), is a new
function of time, g(t). We write

g = g1 ∗ g2.

It is defined as the integral of the product of the two functions after one is
reversed and shifted:

g(t) = (g1 ∗ g2)(t) (24)

=

∫ +∞

−∞
g1(µ)g2(t− µ)dµ =

∫ +∞

−∞
g1(t− µ)g2(µ)dµ. (25)

• Note that t is a parameter as far as the integration is concerned.

• The integrand is formed from g1 and g2 by three operations:

(a) time reversal to obtain g2(−µ),

(b) time shifting to obtain g2(−(µ− t)) = g2(t− µ), and

(c) multiplication of g1(µ) and g2(t− µ) to form the integrand.

• In some references, (24) is expressed as g(t) = g1(t) ∗ g2(t).

Example 2.38. We can get a triangle from convolution of two rectangular
waves. In particular,

1[|t| ≤ a] ∗ 1[|t| ≤ a] = (2a− |t|)× 1[|t| ≤ 2a].

2.39. Convolution properties involving the δ-function:
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2.40. Convolution theorems:

(a) Convolution-in-time rule:

g1 ∗ g2

F−−⇀↽−−
F−1

G1 ×G2. (26)

(b) Convolution-in-frequency rule:

g1 × g2

F−−⇀↽−−
F−1

G1 ∗G2. (27)

Example 2.41. We can use the convolution theorem to “prove” the frequency-
shift property in 2.31.

2.42. From the convolution theorem, we have

• g2
F−−⇀↽−−
F−1

G ∗G

• if g is band-limited to B, then g2 is band-limited to 2B

2.43. Parseval’s theorem (Rayleigh’s energy theorem, Plancherel for-
mula) for Fourier transform:∫ +∞

−∞
|g(t)|2dt =

∫ +∞

−∞
|G(f)|2df. (28)

The LHS of (28) is called the (total) energy of g(t). On the RHS, |G(f)|2
is called the energy spectral density of g(t). By integrating the energy
spectral density over all frequency, we obtain the signal ’s total energy. The
energy contained in the frequency band B can be found from the integral∫
B |G(f)|2df .

More generally, Fourier transform preserves the inner product [2, Theo-
rem 2.12]:

〈g1, g2〉 =

∫ ∞
−∞

g1(t)g
∗
2(t)dt =

∫ ∞
−∞

G1(f)G∗2(f)df = 〈G1, G2〉.
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Example 2.44. Perform the following integration graphically with the help
of Fourier transform properties:

(a)
∞∫
−∞

sinc (t) dt.

(b)
∞∫
−∞

sinc2 (t) dt.
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2.45. (Heisenberg) Uncertainty Principle [2, 11]: Suppose g is a func-
tion which satisfies the normalizing condition ‖g‖2

2 =
∫
|g(t)|2dt = 1 which

automatically implies that ‖G‖2
2 =

∫
|G(f)|2df = 1. Then(∫

t2|g(t)|2dt
)(∫

f 2|G(f)|2df
)
≥ 1

16π2
, (29)

and equality holds if and only if g(t) = Ae−Bt
2

where B > 0 and |A|2 =√
2B/π.

• In fact, we have(∫
t2|g(t− t0)|2dt

)(∫
f 2|G(f − f0)|2df

)
≥ 1

16π2
,

for every t0, f0.

• The proof relies on Cauchy-Schwarz inequality.

• For any function h, define its dispersion ∆h as
∫
t2|h(t)|2dt∫
|h(t)|2dt . Then, we can

apply (29) to the function g(t) = h(t)/‖h‖2 and get

∆h ×∆H ≥
1

16π2
.

2.46. A signal cannot be simultaneously time-limited and band-limited.

Proof. Suppose g(t) is simultaneously (1) time-limited to T0 and (2) band-
limited to B. Pick any positive number Ts and positive integer K such that
fs = 1

Ts
> 2B and K > T0

Ts
. The sampled signal gTs(t) is given by

gTs(t) =
∑
k

g[k]δ (t− kTs) =
K∑

k=−K

g[k]δ (t− kTs)

where g[k] = g (kTs). Now, because we sample the signal faster than the
Nyquist rate, we can reconstruct the signal g by producing gTs ∗ hr where
the LPF hr is given by

Hr(ω) = Ts1[ω < 2πfc]

with the restriction that B < fc <
1
Ts
−B. In frequency domain, we have

G(ω) =
K∑

k=−K

g[k]e−jkωTsHr(ω).
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Consider ω inside the interval I = (2πB, 2πfc). Then,

0
ω>2πB

= G(ω)
ω<2πfc

= Ts

K∑
k=−K

g (kTs) e
−jkωTs z=ejωTs

= Ts

K∑
k=−K

g (kTs) z
−k

(30)
Because z 6= 0, we can divide (30) by z−K and then the last term becomes
a polynomial of the form

a2Kz
2K + a2K−1z

2K−1 + · · ·+ a1z + a0.

By fundamental theorem of algebra, this polynomial has only finitely many
roots– that is there are only finitely many values of z = ejωTs which satisfies
(30). Because there are uncountably many values of ω in the interval I and
hence uncountably many values of z = ejωTs which satisfy (30), we have a
contradiction.

2.47. The observation in 2.46 raises concerns about the signal and filter
models used in the study of communication systems. Since a signal cannot
be both bandlimited and timelimited, we should either abandon bandlimited
signals (and ideal filters) or else accept signal models that exist for all time.
On the one hand, we recognize that any real signal is timelimited, having
starting and ending times. On the other hand, the concepts of bandlimited
spectra and ideal filters are too useful and appealing to be dismissed entirely.

The resolution of our dilemma is really not so difficult, requiring but a
small compromise. Although a strictly timelimited signal is not strictly ban-
dlimited, its spectrum may be negligibly small above some upper frequency
limit B. Likewise, a strictly bandlimited signal may be negligibly small out-
side a certain time interval t1 ≤ t ≤ t2. Therefore, we will often assume that
signals are essentially both bandlimited and timelimited for most practical
purposes.
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