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In this note, we look at derivations of the Erlang B formula and the Engsett formula,
both of which estimate the call blocking probability when trunking is used. To do this,
we need to borrow some concepts from queueing theory. Moreover, some basic analysis of
stochastic processes including Poisson processes and Markov chains is needed. For com-
pleteness, working knowledge on these processes is summarized here as well. However, we
do assume that the readers are familiar with concepts from basic probability course.
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In performance evaluation of cellular systems or telephone networks, Er-
lang B formula [1, p 23], to be revisited in Section 2, is a formula for
estimating the call blocking probability for a cell (or a sector, if sectoring is
used) which has m “trunked” channels and the amount of (“offered”) traffic
is A Erlang:

Pb =
Am

m!
m∑
i=0

Ai

i!

. (1)

It is directly used to determine the probability Pb that call requests will be
blocked by the system because all channels are currently used. The amount
of traffic (A) can be found by the product of the total call request rate λ
and the average call duration (1/µ).

When we design a cellular system, the blocking probability Pb should be
less than some pre-determined value. In which case, the function above can
be used to suggest the minimum number of channels per cell (or sector). If
we already know the number of channels per cell (or sector) of the system,
the (inverse of this) function can also be used to determined how many users
the system can support.

The Erlang B formula (1) is derived under the following M/M/m/m
assumptions:

(a) Blocked calls cleared

• No queueing for call requests.

• For every user who requests service, there is no setup time and the
user is given immediate access to a channel if one is available.

• If no channels are available, the requesting call is blocked without
access and has no further influence on the system.

(b) Call generation/arrival is determined by a Poisson process.

• Arrivals of requests are memoryless.

(c) There are an infinite number of users (with finite overall request rate).

• The finite user results always predict a smaller likelihood of block-
ing. So, assuming infinite number of users provides a conservative
estimate.
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(d) The duration of the time that a user occupies a channel is exponen-
tially distributed.

(e) The call duration times are independent and they are also independent
from the call request process.

(f) There are m channels available in the trunking pool.

• For us, m = the number of channels for a cell or for a sector.

Some of these conditions are captured by Figure 1.M/M/m/m Assumption (Con’t) 
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K(t) =  “state” of the system 
 = the number of used channel at time t 
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The call request process is Poisson with rate  

The duration of calls are i.i.d. exponential r.v. with rate . 

If m = 3, this call will be blocked 

We want to find out what proportion of time the system has K = m. 

m = 

Figure 1: M/M/m/m Assumptions. Here, m = 3.

In this note, we will look more closely at these assumptions and see
how they lead to the Erlang B formula. The goal is not limited to simply
understanding of the derivation of the formula itself but, later on, we also
want to try to develop a new formula that relaxes some of the assumptions
above to make the analysis more realistic.

In Figure 1, we also show one new important parameter of the system:
K(t). This is the number of used channels at time t. When K(t) < m,
new call request can be serviced. When K(t) = m, new call request(s) will
be blocked. So, we can find the call blocking probability by looking at the
value of K(t). In particular, we want to find out the proportion of time the
system has K = m. This key idea will be revisited again in Section 2.

As seen in the assumptions, understanding of the Poisson process is im-
portant for the derivation of the Erlang B formula. Therefore, this process
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and some probability concepts will be reviewed in Section 1. Most of the
probability review will be put in footnotes so that they do not interfere with
the flow of the presentation.

1 Poisson Processes

In this section, we consider an important random process called Poisson
process (PP). This process is a popular model for customer arrivals or calls
requested to telephone systems.

1.1. We start by picturing a Poisson Process as a random arrangement of
“marks” (denoted by “x” or ) on the time axis. These marks usually indi-
cate the time that customers arrive in queueing models. In the language of
“queueing theory”, the marks denote arrival times. For us, they indicate
the time that call requests are made:
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1.2. In this class, we will focus on one kind of Poisson process called ho-
mogeneous1 Poisson process. Therefore, from now on, when we say
“Poisson process”, what we mean is “homogeneous Poisson process”.

1.3. The first property that you should remember is that

there is only one parameter for Poisson process.

This parameter is the rate or intensity of arrivals (the average number of
arrivals per unit time.) We use λ to denote2 this parameter.

1.4. How can λ, which is the only parameter, controls Poisson process?
The key idea is that the Poisson process is as random/unstructured as a

process can be.

1This is a special case of Poisson processes. More general Poisson process (which are called non-
homogenous Poisson processes) would allow the rate to be time-dependent. Homogeneous Poisson processes
have constant rates.

2For homogeneous Poisson process, λ is a constant. For non-homogeneous Poisson process, λ is a
function of time, say λ(t). Our λ is constant because we focus on homogeneous Poisson process
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Therefore, if we consider many non-overlapping intervals on the time axis,
say interval 1, interval 2, and interval 3 below,
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Time 

Interval 1 Interval 2 Interval 3 

and count the number of arrivals N1, N2 and N3 in these intervals3. Then,
the numbers N1, N2 and N3 in our example above should be independent4;
for example, knowing the value of N1 does not tell us anything at all about
what values of N2 and N3 will be. This is what we are going to take as a
vague definition of the “complete randomness” of the Poisson process.

To summarize, now we have one more property of a Poisson process:

The number of arrivals in non-overlapping intervals are indepen-
dent.

3Note that the numbers N1, N2, and N3 are random. Because they are counting the number of arrivals,
we know that they can be any non-negative integers:

0, 1, 2, 3, . . . .

Because we don’t know their exact values, we describe them via the likelihood or probability that they
will take one of these possible values. For example, for N1, we describe it by

P [N1 = 0] , P [N1 = 1] , P [N1 = 2] , . . .

where P [N1 = k] is the probability that N1 takes the value k. Such list of numbers is a bit tedious. So,
we define a function

pN1(k) = P [N1 = k] .

This function pN1(·) tells the probability thatN1 will take a particular value (k). We call pN1 the probability
mass function (pmf) of N1. At this point, we don’t know much about pN1(k) except that its values will be
between 0 and 1 and that

∞∑
k=0

pN1
(k) = 1.

These two properties are the necessary and sufficient conditions for any pmf.
4By saying that something are independent, we mean it in terms of probability. In particular, when we

say that N1 and N2 are independent, it means that

P [N1 = k and N2 = m]

(which is the probability that N1 = k and N2 = m) can be written as the product

pN1(k)× pN2(k).
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1.5. Do we know anything else about N1, N2, and N3? Again, we have only
one parameter λ for a Poisson process. So, can we relate λ with N1, N2, and
N3?

Recall that λ is the average number of arrivals per unit time. So, if λ = 5
arrivals/hour, then we expect that N1, N2, and N3 should conform with this
λ, statistically.

Let’s first be more specific about the time durations of the intervals that
we have earlier. Suppose their lengths are T1, T2, and T3 respectively.
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T1 T2 T3 

N1 = 1 N2 = 2 N3 = 1 

Then, you should expect5 that

EN1 = λT1,

EN2 = λT2, and

EN3 = λT3.

For example, suppose λ = 5 arrivals/hour and T1 = 2 hour. Then you
would see about λ × T1 = 10 arrivals during the first interval. Of course,
the number of arrivals is random. So, this number 10 is an average or the
expected number, not the actual value.

To summarize, we now know one more property of a Poisson process:

For any interval of length T , the expected number of arrivals in
this interval is given by

EN = λT. (2)

5Recall that EN1 is the expectation (average) of the random variable N1. Here, the random variables
are discrete. Therefore, formula-wise, we can calculate EN1 from

EN1 =

∞∑
k=0

k × P [N1 = k] ;

that is the sum of the possible values of N1 weighted by the corresponding probabilities
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1.1 Discrete-time (small-slot) approximation of a Poisson process

1.6. The next key idea is to consider a small interval:
Imagine dividing a time interval of length T into n equal slots.
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Then each slot would be a time interval of duration δ = T/n. For example,
if T = 20 hours and n = 10, 000, then each slot would have length

δ =
T

n
=

20

10, 000
= 0.002 hour.

Why do we consider small interval? The key idea is that as the interval
becomes very small, then it is extremely unlikely that there will be more
than 1 arrivals during this small amount of time. This statement becomes
more accurate as we increase the value of n which decreases the length of
each interval even further. What we are doing here is an approximation6 of
a continuous-time process by a discrete-time process.7

To summarize, we will consider the discrete-time approximation of the
(continuous-time) Poisson process. In such approximation, the time axis is
divided into many small time intervals (which we call “slots”).

When the interval is small enough, we can assume that at most 1
arrival occurs.

6You also do this when you plot a graph of any function f(x). You divide the x−axis by many (equally
spaced) values of x and then evaluate the values of the function at these values of x. You need to make
sure that the values of x used are “dense” enough such that no surprising change in the function f is
overlooked.

7If we want to be rigorous, we would have to bound the error from such approximation and show that
the error disappear as n→∞. We will not do that here.
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1.7. Let’s look at the small slots more closely. Here, we let N1 be the
number of arrivals in slot 1, N2 be the number of arrivals in slot 2, N3 be
the number of arrivals in slot 3, and so on as shown below.
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Then, these Ni’s are all Bernoulli random variables because they can only
take the values 0 or 1. In which case, for their pmfs, we only need to specify
one value P [Ni = 1]. Of course, knowing this, we can calculate P [Ni = 0]
by P [Ni = 0] = 1− P [Ni = 1].

Recall that the average EX of any Bernoulli random variable X is simply
P [X = 1].8 So, if we know EX for Bernoulli random variable, then we know
right away that P [X = 1] = EX and P [X = 0] = 1− EX.

Now, it’s time to use what we learned about Poisson process. The slots
that we consider before are of length δ = T/n. So, the random variables
N1, N2, N3, . . . share the same expected value

EN1 = EN2 = EN3 = · · · = λδ.

For example, with λ = 5, T = 20, and n = 10, 000, the expected number of
arrivals in a slot is λδ = λTn = 0.01 arrivals.

Because these Ni’s are all Bernoulli random variables and because they
share the same expected value, we can conclude that they are identically
distributed; that is their pmf’s are all the same. Furthermore, because the
slots do not overlap, we also know that the Ni’s are independent. Therefore,

for small non-overlapping slots, the corresponding number of ar-
rivals Ni’s are i.i.d. Bernoulli random variables whose pmf’s are
given by

p1 = P [Ni = 1] = λδ and p0 = P [Ni = 0] = 1− λδ,

where δ is the length of each slot.
8For Bernoulli random variable X, the average is

EX = 0× P [X = 0] + 1× P [X = 1] = P [X = 1] .

For conciseness, we usually let p0 = P [X = 0] and p1 = P [X = 1]. Hence, EX = p1.
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1.8. Discrete-time approximation provides a method for MATLAB to generate
a Poisson process with arrival rate λ. Here are the steps:

(a) First, we fix the length T of the whole simulation. (For example, T = 20
hours.)

(b) Then, we divide T into n slots. (For example, n = 10, 000.)

(c) For each slot, only two cases can happen: 1 arrival or no arrival. So,
we generate Bernoulli random variable for each slot with p1 = λ×T/n.
(For example, if λ = 5 arrival/hr, then p1 = 0.01.)

To do this for n slots, we can use the command rand(1,n) < p1 or
binornd(1,p1,1,n).

1.9. Note that what we have just generated is exactly Bernoulli trials
whose success probability for each trial is p1 = λδ. In other words, a Poisson
process can be approximated by Bernoulli trials with success probability
p1 = λδ.

1.2 Properties of Poisson Processes

1.10. What we want to do next is to revisit the description of the number
of arrivals in a time interval. Now, we will NOT assume that length of the
time interval is short. In particular, let’s reconsider an interval of length T

below.
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T 

Let N be the number of arrivals during this time interval. In the picture
above, N = 4.

Again, we will start with a discrete-time approximation; we divide T
into n small slots of length δ = T

n . In the previous subsection, we know that
the number of arrivals in these intervals, denoted by N1, N2, . . . , Nn can be
well-approximated by i.i.d. Bernoulli with probability of having exactly one
arrival = λδ. (Of course, we need δ to be small for the approximation to be
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precise.) The total number of arrivals during the original interval of length
T can be found by summing the values of the Ni’s:

(3)

You may recall, from introductory probability class, that

(a) summation of n Bernoulli random variables with success probability p
gives a binomial(n, p) random variable9

and that

(b) a binomial(n, p) random variable whose n is large and p is small can
be well approximated by a Poisson random variable with parameter
α = np 10.

Therefore, the pmf of the random variable N in (3) can be approximated
by a Poisson pmf whose parameter is

α = np1 = nλ
T

n
= λT.

This approximation11 gets more precise when n is large (δ is small). In

9X is a binomial random variable with size n ∈ N and parameter p ∈ (0, 1) if

pX (x) =

{ (
n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n}

0, otherwise
(4)

We write X ∼ B(n, p) or X ∼ binomial(p). Observe that B(1, p) is Bernoulli with parameter p. Note
also that EX = np. Another important observation is that such random variable is simply a sum of n
independent and identically distributed (i.i.d.) Bernoulli random variables with parameter p.

10X is a Poisson random variable with parameter α > 0 if

pX (x) =

{
e−α α

x

x! , x ∈ {0, 1, 2, . . .}
0, otherwise

We write X ∼ P (α) or Poisson(α). Note also that EX = α.
11In introductory probability class, you may have seen pointwise convergence in terms of the pmfs. An

alternative view on this convergence is to look at the characteristic function. The characteristic function
ϕX(u) of a random variable X is given by E

[
ejXu

]
. In particular, for Bernoulli random variable with

parameter p, the characteristic function is 1 − p + peju. One important property of the characteristic
function is that the characteristic function of a sum of independent random variables is simply the product
of the characteristic functions of the individual random variables. Hence, the characteristic function of the
binomial random variable with parameter pair (n, p) is simply

(
1− p+ peju

)n
because it is a sum of n

independent Bernoulli random variables. For us, the parameter p is λT/n. So, the characteristic function
of the binomial is (

1− 1

n

(
λT + λTeju

))n
.

As n → ∞, the binomial characteristic function converges to exp
(
−λT + λTeju

)
which turns out to be

the characteristic function of the Poisson random variable whose parameter is α = λT .
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fact, in the limit as n → ∞ (and hence δ → 0), the random variable N is
governed by P(λT ). Recall that the expected value of P(α) is α. Therefore,
λT is the expected value of N . This agrees with what we have discussed
before in (2).

In conclusion,

the number N of arrivals in an interval of length T is a Poisson
random variable with mean (parameter) λT

1.11. Now, to sum up what we have learned so far, the following is one of
the two main properties of a Poisson process

The number of arrivals N1, N2, N3, . . . during non-overlapping time
intervals are independent Poisson random variables with mean λ×
the length of the corresponding interval.

1.12. Another main property of the Poisson process, which provides an-
other method for simulation of Poisson process, is that

The lengths of time between adjacent arrivals W1,W2,W3, . . . are
i.i.d. exponential12 random variables with mean 1/λ.
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W1 W2 W3 W4 

The exponential part of this property can be seen easily by considering
the complementary cumulative distribution function (CCDF) of the Wk’s.

12The exponential distribution is denoted by E (λ). An exponential random variable X is characterized
by its probability density function

fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0.

Note that EX = 1
λ . The cumulative distribution function (CDF) of X is given by

FX (x) ≡ P [X ≤ x] =

{
1− e−λx, x > 0,
0, x ≤ 0.

Often, we also talked about the complementary cumulative distribution function (CCDF) which, for expo-
nential random variable, is given by

P [X > x] ≡ 1− FX (x) =

{
e−λx, x > 0,
1, x ≤ 0.
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Alternatively, this property can be derived by looking at the discrete-
time approximation of the Poisson process. In the discrete-time version,
the time until the next arrival is geometric13. In the limit, the geometric
random variable becomes exponential random variable.
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Both main properties of Poisson process are shown in Figure 2. The
small-slot analysis (discrete-time approximation), which can be used to
prove the two main properties, is shown in Figure 3.Poisson Process 

10 

The number of arrivals N1, N2, N3,…during non-overlapping time intervals  

are independent Poisson random variables with mean =   the length of the 

corresponding interval. 

The lengths of time between adjacent arrivals W1, W2, W3 ,… are i.i.d. 

exponential random variables with mean 1/. 

Time 

T1 T2 T3 

N1 = 1 N2 = 2 N3 = 1 

W1 W2 W3 W4 

Figure 2: Two main properties of a Poisson process

13You may recall from your introductory probability class that, in Bernoulli trials, the number of trials
until the next success is geometric.
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Small Slot Analysis (Poisson Process) 

11 

(discrete time approximation) 

Time 

In the limit, there is at most one arrival in any slot. The numbers of arrivals on the slots are 

i.i.d. Bernoulli random variables with probability p1 (= ) of exactly one arrivals where  is 

the width of individual slot. 

The total number of arrivals on n slots is a 

binomial random variable with parameter 

(n,p1) 

D1 
The number of slots between adjacent 

arrivals is a geometric random variable. 

In the limit, as the slot length gets smaller, geometric exponential 

binomial Poisson 

Time 

T1 T2 T3 

N1 = 1 N2 = 2 N3 = 1 

W1 W2 W3 W4 

Figure 3: Small slot analysis (discrete-time approximation) of a Poisson process

2 Derivation of the Markov chain for Erlang B For-

mula

In this section, we combine what we know about Poisson process discussed
in the previous section with the assumption on the call duration. The goal
is to characterize how the random quantity K, eluded to before we begin
Section 1, is evolved as a function of time. The key idea is again to use the
small-slot (discrete-time) approximation.

2.1. Recall that, for the Erlang B formula, we assume that there are m
channels available in the trunking pool. Therefore, the probability Pb that
a call requested by a user will be blocked is given by the probability that
none of the m channels are free when a call is requested.

We will consider the long-term behavior of this system, i.e. the system
is assumed to have been operating for a long time. In which case, at the
instant that somebody is trying to make a call, we don’t know how many
of the channels are currently free.
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2.2. Let’s first divide the time into small slots (of the same length δ) as we
have done in the previous section.
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Then, consider any particular slot. Suppose that at the beginning of this
time slot, there are K channels that are currently used.14 We want to find
out how this number K changes as we move forward one slot time. This
random variable K will be called the state of the system15. The system
moves from one state to another one as we advance one time slot.

Example 2.3. Suppose there are 5 persons using the channels at the be-
ginning of a slot. Then, K = 5.

(a) Suppose that, by the end of this slot, none of these 5 persons finish
their calls.

(b) Suppose also that there is one new person who wants to make a call at
some moment of time during this slot.

Then, at the end of this time slot, the number of channels that are occupied
becomes

So, the state K of the system changes from 5 to 6 when we reach the end
of the slot, which can now be regarded as the beginning of the next slot.

2.4. Our current intermediate goal is to study how the state K evolves
from one slot to the next slot. Note that it might be helpful to label the
state K as K1 (or K[1]) for the first slot, K2 (or K[2]) for the second slot,
and so on.

As shown in Example 2.3, to determine how the Ki’s progress from K1

to K2, K2 to K3, and so on, we need to know two pieces of information:

14The value of K can be any integer from 0 to m.
15This is the same “state” concept that you have studied in digital circuits class.
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Q1 How many calls (that are ongoing at the beginning of the slot under
consideration) end during the slot that we are considering?

Q2 How many new call requests are made during the slot under consider-
ation?

Note that Q1 depends on the characteristics of the call duration and Q2
depends on the characteristics of the call request/arrival process. After we
know the answers to these two questions, then we can find Ki via

Ki+1 = Ki − (# old call ends)︸ ︷︷ ︸
Q1

+ (# new call requests)︸ ︷︷ ︸
Q2

2.5. Q2 is easy to answer.
A2: If the interval is small enough (δ is small), then there can be at most
one new arrival (new call request) which occurs with probability

p1 = λδ.

2.6. For Q1, we need to consider the call duration model . The M/M/m/m
assumption states that the call duration16 is exponentially distributed with
parameter (rate) µ. Let’s consider the call duration D of a particular call.

Recall that the probability density function (pdf) of an exponential ran-
dom variable X with parameter µ is given by

fX(x) =

{
µe−µx, x > 0,
0, x ≤ 0,

and the average (or expected value) is given by

E [X] =

∫ ∞
0

xfX(x)dx =
1

µ
.

You may remember that in the Erlang B formula, we assume that the aver-
age call duration is E [D] = H = 1

µ .

16In queueing theory, this is sometimes called the service time . The parameter µ then captures the
service rate.
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An important property of an exponential random variable X is its mem-
oryless property17:

P [X > x+ δ|X > x] = P [X > δ] .

For example,
P [X > 7|X > 5] = P [X > 2] .

What does this memoryless property mean? Suppose you have a light-
bulb and you have used it for 5 years already. Let it’s lifetime be X.
Then, of course, X is a random variable. You know that X > 5 be-
cause it is still working now. The conditional probability P [X > 7|X > 5]
is the probability that it will still work after two more years of use (given
the fact that currently it has been working for five years). Now, if X is
an exponential random variable, then the memoryless property says that
P [X > 7|X > 5] = P [X > 2]. In other words, the probability that you can
use it for at least two more years is exactly the same as the probability that
you can use a new lightbulb for more than two years. So, your old lightbulb
essentially forgets that it has been used for 5 years, It always performs like
a new lightbulb (statistically). This is what we mean by the memoryless
property of an exponential random variable.

2.7. To answer Q1, we now return to our small slot approximation. Again,
consider one particular slot. At the beginning of our slot, there are K = k

ongoing calls. The probability that a particular call, which is still ongoing
at the beginning of this slot, will be unfinished by the end of this slot is
e−µδ.

17To see this, first recall the definition of conditional probability:P (A |B ) = P (A∩B)
P (B) . Therefore,

P [X > x+ δ |X > x ] =
P [X > x+ δ and X > x]

P [X > x]
=
P [X > x+ δ]

P [X > x]
.

Now, P [X > x] =
∞∫
x

µe−µxdx = e−µx. Hence,

P [X > x+ δ |X > x ] =
e−µ(x+δ)

e−µx
= e−µδ = P [X > δ] .
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To see this, consider a particular call. Suppose the duration of this call
is D. By assumption, we know that D is exponential with parameter µ.

Let s be the length of time from the call initiation time to the beginning
of our slot. Note that the call is still ongoing. Therefore D > s. Now, to
say that this call will be unfinished by the end of our slot is equivalent to
requiring that D > s+ δ. By the memoryless property, we have

P [D > s+ δ |D > s ] = P [D > δ] = e−µδ.

Recall that we have K = k ongoing calls at the beginning of our slot. So,
by the end of our slot, the probability that none of them finishes is(

e−µδ
)k

= e−kµδ.

The probability that exactly one of them finishes is

Now, note that ex ≈ 1 + x for small x. Therefore, A1:

(a) the probability that none of the K = k calls ends during our slot is

(b) the probability that exactly one of them ends during our slot is
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Magically, these two probabilities sum to one. So, we don’t have to consider
other events/cases.

2.8. Summary:

(a) Call generation/request/initiation process:

(b) Call duration process:

So, after one (small) slot, there can be four events:

The corresponding probability for each case is

Therefore, if we have K = k at the beginning of our time slot, the at the
end of our slot, K may

(a) remain unchanged with probability 1− λδ − kµδ, or

(b) decrease by 1 with probability kµδ, or

(c) increase by 1 with probability λδ.
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Small slot Analysis (Transition Prob.) 

2 

Ki+1 = Ki + (# new call request) – (# old-call end) 

P[0 new call request] ≈ 1 -  

P[1 new call request] ≈  

P[0 old-call end] ≈ 1 - k 

P[1 old-call end] ≈ k 

k+1 k k-1 

  1 k k      1 k   

     1 1 1k k k          

The labels on the arrows are 

transition probabilities. 

Figure 4: State transition diagram for state k.

This can be summarized via a diagram in Figure 4:
Note that the labels on the arrows indicate transition probabilities which

are conditional probabilities of going from some value of K to another value.

2.9. When there are m trunked channels, the possible values of K are
0, 1, 2, . . . ,m. We can combine the diagram above into one diagram that
includes all possible values of K:

This diagram is called the Markov chain state diagram for Erlang B.
Note that the arrow λδ which should go out of state m will return to

state m itself because it corresponds to blocked calls which do not increase
the value of K.
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Example 2.10. m = 2:Small slot Analysis: Markov Chain 

3 

 Case: m = 2 

2 1 0 

 

1 

 2

1 2

1   

What we need from our model is to find out the behavior of the system
in the long run. The complete discussion of the Markov chain itself deserves
a whole textbook. (See e.g. [2].) In the next section, we introduce the
concept of Markov chain and some necessary properties.

3 Markov Chains

3.1. Markov chains are simple mathematical models for random phenomena
evolving in time. Their simple structure makes it possible to say a great
deal about their behavior. At the same time, the class of Markov chains
is rich enough to serve in many applications. This makes Markov chains
the most important examples of random processes. Indeed, the whole of the
mathematical study of random processes can be regarded as a generalization
in one way or another of the theory of Markov chains. [2]

3.2. The characteristic property of Markov chain is that it retains no mem-
ory of where it has been in the past. This means that only the current state
of the process can influence where it goes next.

3.3. Markov chains are often best described by their (state) diagrams. You
have seen a Markov chain in Example 2.10.
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Example 3.4. Draw the (state) diagram of a Markov chain which has three
states: 1,2 and 3. You move (transition) from state 1 to state 2 with prob-
ability 1. From state 3 you move either to 1 or to 2 with equal probability
1/2, and from 2 you jump to 3 with probability 1/3, otherwise stay at 2.

3.5. The Markov chains that we have seen in the Example 3.4 and in the
previous section (Example 2.10) are all discrete-time Markov chains. The
Poisson process that we have seen earlier is an example of a continuous-
time Markov chain. However, equipped with our small-slot approximation
(discrete-time approximation) technique, we may analyze the Poisson pro-
cess as a discrete-time Markov chain as well.

3.6. We will now introduce the concept of stationary distribution, steady-
state distribution, equilibrium distribution, and limiting distribution. For
the purpose of this class, we will not distinguish these terms. We shall see
in the next example that for the Markov chains that we are considering, in
the long run, it will reach a steady-state distribution.

Example 3.7. Consider the Markov chain characterized by the state tran-
sition diagram given below:

12 

 

A B 

3/5 

1/2 

2/5 1/2 

Let’s try a thought experiment – imagine that you start with 100,000
trials of these Markov chain, all of which start in state B. So, during slot
1 (the first time slot), all trials will be in state B. For slot 2, about 50% of
these will move to state A; but the other 50% of the trials will stay at B.

21



By the time that you reach slot 6, you can observe that out of the 100,000
trials, about 45.5% will be in state A and about 55.5% will be in state B.
These numbers stay roughly the same as you proceed to slot 7, 8, 9, and
so on. Note also that it does not matter how you start your 100,000 trials.
You may start with 10,000 in state A and 90,000 in state B. Eventually, the
same numbers, 45.5% and 54.5%, will emerge.

In conclusion,

(a) If you look at the long-run behavior of the Markov chain at a particular
slot, then the probability that you will see it in state A is 0.455 and
the probability that you will see it in state B is 0.545.

(b) In addition, one can also show that if you look at behavior of a Markov
chain for a long time, then the proportion of time that it stays in state
A is 45.5% and the proportion of time that it stays in state B is 54.5%.

The distribution (0.455, 0.545) is what we called stationary distribution,
steady-state distribution, equilibrium distribution, or limiting distribution
above.

3.8. In [3], the steady-state distribution for the M/M/m/m assumption is
derived via the use of the global balance equation instead of finding the
limit of the distribution as we have done in Example 3.7. The basic idea
that leads to the global balance equation is simple. When we look back
at the numbers that we got in Example 3.7, if we assume that the system
will reach some steady-state values, then at the steady-state, we must have
roughly the same number of transitions from state A to B and transitions
from state B to state A.

Therefore,
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Finally, we can now use what we learned to derive the Erlang B formula.

Example 3.9. Let’s reconsider Example 2.10 where m = 2.

Small Slot Analysis: Markov Chain 

2 1 0 

 

1 

 2

1 2

1   Let pk be the long-term 

probability that K = k. 

0 1p p  1 22p p 

0 1 2 1p p p  

2

0 1 0 2 02

1 1
, ,

2
1

2

p p Ap p A p
A

A

  

 
b mp p

M/M/m/m Queuing Model 

Global Balance equations 

The same process can be used to derive the the Erlang B formula.

3.10. In general, if we have m channels, then

pm =
Am

m!
m∑
k=0

Ak

k!

.

Note that pm is the (long-run) probability that the system is in state m.
When the system is in state m, all channels are used and therefore any new
call request will be blocked and lost.

Here, pm is the same as call blocking probability, which is the long-run
proportion of call requests that get blocked.
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4 Engsett Model

In this section, we will consider a more realistic system where the infinite-
user assumption in M/M/m/m is relaxed.

4.1. Modified (more realistic) assumptions:

(a) Finite number of users: n users/customers/subscribers.

(b) Each user independently generates new call request with rate λu.

• Total call request rate = n× λu = λ.

4.2. We need to modify our small slot analysis. Here, for each small slot,
each user do the following:

(a) If it is idle (not using the channel) at the beginning of the slot,

(i) it may request/generate a new call in a small slot with probability
λuδ.

i. If there is at least one available channel, then it may start its
conversation. (In which case, at the beginning of the next slot,
its call is ongoing.)

ii. If there is no channel available, then the call is blocked and it
is idle again (at the beginning of the next slot).

(ii) With probability 1 − λuδ, no new call is requested by this user
during this slot. (In which case, it is idle at the beginning of the
next slot.)

(b) If it is making a call at the beginning of the slot,

(i) the call may end with probability µδ. (In which case, at the begin-
ning of the next slot, it is idle.)

(ii) With probability 1− µδ, the call is still ongoing at the end of this
slot (which is the same as the beginning of the next slot.)

4.3. Observe that the call generation process for each user is not a Poisson
process with rate λu. This is because it get interleaved with the call duration
for each successful call request. Part of the Poisson assumption that is left
is that, in fact, for an idle user, the time until the next call request will be
exponential with rate λu.
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4.4. A user can not generate new call when he/she is already involved in a
call. Therefore, if the system is in state K = k, there are only n − k users
that can generate new calls. Hence, the “total” call request rate for state
K = k is (n− k)λu.

• Earlier, when we consider the Erlang B formula, we always have λ as
the total new call request rate regardless of how many users are using
the channels. This is because we assumed infinite number of users and
hence having k users using the channels will not significantly change
the total call request rate.

4.5. Comparison of the state transition probabilities:

4.6. New state transition diagram:
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4.7. Comparison of the steady-state probabilities:

4.8. It is tempting to conclude that the call blocking probability is pm.
However, this is not the case for us here. Recall that pm is the long-run
probability (and the long-run proportion of time) that the system will be
in state K = m. In this state, any new call request will be blocked. So, pm
gives the blocking probability in terms of the time (time congestion).

However, if you look back at how we define Pb which is the call blocking
probability, this is the probability that a call is blocked. So, what we need
to find out is, out of all the new calls that are requested, how many will be
blocked.

To do this, consider s slots. Here the value of s is very large. Then,. . .

(a) About pk × s slots will be in state k.

(b) Each of these slots will generate new call request with probability

(n− k)λuδ.

(c) So, the number of new calls request from slots that are in state k will
be approximately

(n− k)λuδ × (pk × s).

(d) Therefore, total number of new call requests will be approximately

m∑
k=0

(n− k)λuδ × (pk × s).

(e) However, the number of the new call requests that get blocked is

(n−m)λuδ × (pm × s).
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(f) Hence, the proportion (probability) of calls that are blocked is

(n−m)λuδ × (pm × s)∑m
k=0(n− k)λuδ × (pk × s)

=
(n−m)pm∑m
k=0(n− k)pk

.

Plugging in the values of pk and pm which we got earlier, we then get

Pb =
(n−m)pm
m∑
k=0

(n− k)pk

=
(n−m)

Amu (nm)
z(m,n)

m∑
k=0

(n− k)
Aku(nk)
z(m,n)

=
(n−m)Am

u

(
n
m

)
m∑
k=0

(n− k)Ak
u

(
n
k

) .
4.9. Comparison of the call blocking probability:

4.10. Remarks:

(a) If we keep the total rate λ constant and let n → ∞, then the call
blocking probability in the Engsett model will be the same as the call
blocking probability in the Erlang model.

(b) If n ≤ m, the call blocking probability in Engsett model will be 0.
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