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Review: Block Encoding

® We mentioned the general form of channel coding over BSC.

® In particular, we looked at the'general form of block
codes.
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k bits k bits k bits n bits n bits n bits

Code length
“Dimension” of the code = 3 bits in a (block o-r) messaqe

(n,k) codes: n-bit blocks are used to conveys k-info-bit blocks

Assume n > k >codewords >messages
k Max. achievable rate
Rate' R — _ <1 _ Lrossover
. n’ . . ! ( rroboV. v
Recall that the capacity of BSCis C = 1 — H(p).| 4
U°f" u] For p € (0,1), we also have C € (0,1). BSC

Achievable rate is < 1. 4 J\

[
’

1 |

NC

C

e C = the collection of all codewords for the code considered

® Each n-bit block is selected from C.
® The message (data block) has k bits,

so there are 2% possibilities.

® A reasonable code would not assign the same codeword to

different messages.
® Therefore, there are 2* (distinct) codewords in C.
* Ex. Repetition code withn =3 , k=1
C- [ooo, 1143
k. 1
R= 713
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MATHEMATICAL SCRIPT CAPITAL C

Charbase

A visual unicode database

« U+1D49D INVALID CHARACTER

U+1D49E: MATHEMATICAL SCRIPT CAPITAL C

U+1D49F MATHEMATICAL SCRIPT CAPITALD —

ol s

Your Browser

C

Decomposition

C

U+0043

Index

U+1D49E (119966)

Class

Uppercase Letter (Lu)

Block

Mathematical Alphanumeric Symbaols

Java Escape

"ud835\udcge”

Javascript Escape

“.ud83s\udcge”

Python Escape

uUooo01 d4ge’

HTML Escapes

&#119966; &#x1d49e;

URL Encoded

q=":F0%9D%92%9E

UTF8

0 9d 92 9e

UTFi16

d835 dcge
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5 mod 2 = 1
GF(2)

® The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication of

bits:
®
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® These are modulo-2 addition and modulo-2 multiplication,
respectively.

® The operations are the same as the exclusive-or (XOR)
operation and the AND operation.
We will simply call them addition and multiplication so that we can
use a matrix formalism to define the code.

® The two-element set {0, 1} together with this definition of
addition and multiplication is a number system called a finite

field or a Galois field, and is denoted by the label GF(2).
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The above property implies —X = X
H_/

GF(2)

® The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication of
bits:

®|0 1 0 1
o | K 010 O
1|11 O 110 1
® Notethat y@(=x
1x1+1x0 =1
X@l=X /
X®x=0 T 1217 o
L 1][0 } L ]

4&1 %X
By definition, “-x” is sonuthmw that, when added with x, gives 0.

* Extension: For vector and matrix, apply the operations to the elements
the same way that addition and multiplication would normally apply
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(except that the calculations are all in GF(2)).
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BSC and the Error Pattern

e=0: y =

X \ e \ yd=15)/f.x
e

° Agaln to transmit k information bits, the channel is used n
coded dala )

/cc')('o/

ti
.cocl-sci cl 1rne code vector vece ch
o'osc.r\/cd
- ) — ] cocitwo.-
h%[ Encoder ] > X \ y
1x k Ixn _C"%
C 2 =
SSO‘SC Vt.C"foV Ex. § = O 121 Q — — @X _®§
am”uocu Co4114 ‘\
word z - - error pattern
e = ;-_(_@ v =00101 Its nonzero elements mark the

positions of transmission error in y /
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Error

pattern
wikh < (O When the crossover probability of the BSC p is < 0.5,
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Review: Block Decoding

® In this chapter, we assume the use of minimum distance
decoder.

&(y) = argmind(x y)
® Recall i (or'ﬁma')

all)w-l:l.-.l] cde word:

(D The MAP decoder is the optimal decoder. BSC witn p<o.5

(1) When the codewords are equally-likely, the ML decoder the same
as the MAP decoder; hence it is also optimal.

ML decoder is the same as the minimum distance decoder.
* Also, in this chapter, we will focus
less on probabilistic analysis,

but more on explicit codes.

oceu’r, _
Ex. @ =000 is more l:w,l/ to occur tham e =010

MAPD = MLD = mia dit. decoder
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Vector Notation /.,

—_—

® V: column vector v;

® I': row vector (11, 7o) ey Ty e 1)
® Subscripts represent element indices inside individual
vectors.
v; and 77 refer to the i elements inside the vectors V and I,

re spectively.

® When we have a list of vectors, we use superscripts in
parentheses as indices of vectors.

, V. ..,V is a list of M column vectors
1_'(1), 1_‘(2), e [(M) is a list of M row vectors
i .
TI\( )and [(l) refer to the i vectors in the corresponding lists.
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Harpoon

* along, heavy spear attached to
a rope, used for killing large

fish or whales
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Linear Block Codes

e Definition: Cis a (binary) linear (block) code if and

only 1f C forms a vector (sub)space (over GF(2).

()Ll ut the |l|

Equlvalently, thls is the same as requiring that
irx® and x@ € C, then xV@x® € C.

Note that any wu.m, linear code C must contain Q.

Teke a?, Py e(j ﬁﬂ:Dﬁi mast be € @

- 0
e Ex.The code that we considered in HW4 is
C = {00000,01000,10001,11111}

Is it a linear code?

2"z 01000 €C

®a_c_“ = 10001 €C

L11001 ¢e = e v not

linecar.




Linear Block Codes: Motivation (1)

° Why linear block codes are popular?

® Recall: General block encoding

Characterized by its codebook.

o The table that lists all the 2¥ mapping from the k-bit info-block s

to the n-bit codeword x is called the codebook.

(M)

o The M info-blocks are denoted by sV, s

The corresponding M codewords are denoted by x(M, x® .. x()
respectively. L b n s Wit ® ooseilelats
2" possibi|itie 2 pessib:libie
index i | info-block s codeword x f ’ ) f ’
1 |sP=000...0 |xV=__ _ _
2% roms 2 [sP=000...1 [xP= "5l

M | s =111...1|xM =

Can be realized by combinational / combinatorial circuit.

@ If lucky, can used K-map to simplify the circuit.

\

Linear Block Codes: Motivation (2)

® Why linear block codes are popular?

® Linear block encoding is the same as matrix multiplication.
See next slide.
The matrix replaces the table for the codebook.

The size of the matrix is only k X 7 bits.
Compare this against the table (codebook) of size 2k x (k + n) bits for

general block encoding,
® Linearity = easier implementation and analysis
® Performance of the class of linear block codes is similar to
performance of the general class of block codes.

Can limit our study to the subclass of linear block codes

@ without sacrificing system performance.
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Linear Block Codes: Generator Matrix

]

For any linear code, there is a matrix (3 = Ea

called the generator matrix ) “kexn
such that, for any codeword X, there is a message vector b

which produces X by

«— mod-2 summation

(1) Any codeword can be expressed as a hnear combination of the

Note:

rows of G Removrk : BGiven a matrix G'

d

W,

f" 10,

(2)C = {bG:b € {0,1}*} tre (block ) code huef is

con S"'IUC.""J L)I (_’. ) .l’

N Qa(:)

olnays 'Tmear . \

Lmear Block Codes: Examples
°Repet11t10ncode:)_(=[b b -+ b|] Ex n=»

— —

G=[1 1 - 1] n times x =[b b ,7.:\

x=bG=bG=[p b - b]
pok_1 =L[[1 1 1])
: &

* Single-parity-check code: x = [

SIW‘

I=3
\Mw
Jy
oy
—_—

G = [Lexrs 1] parity bit
k k
k== 1 Bx. k=2 , n=3

balb, k]
C*, L).‘.l”%'? z =", "’z L1®L‘L]/
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Vectors representing 3-bit codewords

O %011 00y e #011
d P e ol
/// // : /// // :
101 ===~ it AUV R 101 ¢7————+ i A U B
| | | | | |
| | | | | :
| | | | |
| | | | | |
| | 4010 | ! 4010
| 000 | -7 | 00 | -7
| e | (e
________ & &
00 110 00 110
Triple-repetition code Parity-check code
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Evén Parity vs. Odd Parity

® Parity bit checking is used occasionally for transmitting ASCII
characters, which have 7 bits, leaving the 8th bit as a parity
bit.

® Two options:

Even Parity: Added bit ensures an even number of 1s in each
codeword.
o m—
A: 10000010
Odd Parity: Added bit ensures an odd number of 1sin each
codeword.
A: 10000011




Even Parity vs. Odd Parity

® Even parity and odd parity are properties of a codeword (a
vector), not a bit.
® Note: The generator matrix G = [Ix; 1] previously

considered produces even parity COC}{GWOI’d The som of all elemeds

X = b ) b;
; ilo @2‘ =0

® Q: Consider a code that uses odd parity. Is it linear?;- )= EX

inside *x

OJJ FWl.t/ s 'ﬁ Ce l.ncw COAQ .

Recson: O s not o member.

(Q °'|""°73 has even ra»i‘l/)
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Error Control using Parity Bit

* If an odd number of bits (including the parity bit) are
transmitted incorrectly, the parity bit will be incorrect, thus

indicating that a parity error occurred in the transmission.

e Ex.
Suppose we use even parity. \.A"

Y
Consider the codeword X = 10000010
one 'D 'I' e&reo V

Y. = 10000110 = oJJ rnn'ly = st " wcgnﬁ
S ervor detected

#wm., m%uoai" 'Fa/

rt‘l’tﬁﬁ i ulh "

Twe il erro”
e Suitable for detecting errors; cannot correct any errors

Y = 1oooc>1o o = still evem r&ni/ =) ersrov UnA&i'cc."y

=) incorrectl, m‘i‘u,u-}- -+ as \‘3/



Error Detection

°* Two types of error control:
error detection
error correction

@Error detection: the determination of whether errors are

present in a I'GCGiVCd WOI'd.

® An error pattern is undetectable if and only if it causes the
received word to be a valid codeword other than that which
was transmitted.

Ex: In single-parity-check code, error will be undetectable

when the number of bits in error is even.

\
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(DError Correction

* In FEC (forward error correction) system, when the
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid

codewords was transmitted.

® Jtis possible for a detectable error pattern to cause the
decoder to select a codeword other than that which was
actually transmitted. The decoder is then said to have

committed a decoding error.




Square array for error correction by
parity checking. 2=L™ ™ ~o- mal

® The codeword is formed by

arranging k message bits in m, m, my 0
a square array j
whose rows and columns { 1;'1 S 9
4 5 3 2
are checked by 2\/% parity O j’
bits. 1 (&} (@) 1
.o . 1y g My 3
® A transmission error in one N
message bit causes a row q P 1
and column parity failure >i4 ‘C) .C/G
with the error at the - —
intersection, so single -
o = W - - lm c, -
errors can be corrected. — L \ t]

[Carlson & Crilly, p 594] /
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Weight and Dis;tance

® The weight of a codeword X or an error pattern € is the
number of nonzero coordinates in the codeword or the error

pattern.

The weight of a codeword X is commonly written as w(g).
Ex.w(010111) = &4

e The Hamming distance between two n-bit blocks is the

number of coordinates in which the two blocks differ.

Ex.d(010111,011011

SV ILEIE Lt ¥4

Note: d(%,¥) =w(z2®y)=w(e)

~
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Review: Minimum Distance (d_,.)

The minimum distance (d_; ) of a block code is the

minimum Hamming distance between all distinct pairs of

codewords.

HW4 Problem 2. A channel encoder map blocks of two bits to five-bit (channel) codewords. The
four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over

the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d,,;, among the codewords?

f min = 1
eoob o 01900/!42001 11111
ocooo @ 2 5
o190 ) L
L 1000 1 3
11111

\_
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d_. :two important facts

min*
® For any linear block code, the minimum distance (d_; )

can be found from minimum Weight of i

codewords.
So, instead of checking (sz) pairs,

simply check the weight of the 2% codewords.

® A code with minimum distance d_, can

detect all error patterns of Weight w<d . -1

) din—1
correct all error patterns of welght w < I%L

the floor function

/




