Digital Communication Systems ECS 452					
Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Channel Coding					
Error control code/coding/strategy					
	Office Hours:BKD, 6th floor of Sirindhralai buildingTuesday14:20-15:20Wednesday14:20-15:20Friday9:15-10:15				

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

- C = the collection of all codewords for the code considered
- Each *n*-bit block is selected from C.
- The message (data block) has k bits, so there are 2^k possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^k (distinct) codewords in \mathcal{C} .
- Ex. Repetition code with n = 3, k=1

$$C = \{ 000, 111 \}$$
$$R = \frac{k}{n} = \frac{1}{3}$$

MATHEMATICAL SCRIPT CAPITAL C Charbase

A visual unicode database

← U+1D49D INVALID CHARACTER

U+1D49F MATHEMATICAL SCRIPT CAPITAL D ---

U+1D49E: MATHEMATICAL SCRIPT CAPITAL C \mathcal{C} Your Browser С Decomposition U+0043 U+1D49E (119966) Index Class Uppercase Letter (Lu) Block Mathematical Alphanumeric Symbols "\ud835\udc9e' Java Escape "\ud835\udc9e' lavascript Escape G+1 0 Python Escape u'\U0001d49e' **HTML Escapes** 𝒞 𝒞 URL Encoded q=%F0%9D%92%9E UTF8 f0 9d 92 9e UTF16 d835 dc9e

[http://www.charbase.com/1d49e-unicode-mathematical-script-capital-c]

GF(2)

5 mod 2 = 1 T remainder of the division of 5 by 2

 The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1		0	1
0	0	1	0	0	0
1	1	0	1	0	1

- These are **modulo-2** addition and **modulo-2** multiplication, respectively.
- The operations are the same as the **exclusive-or** (**XOR**) operation and the **AND** operation.
 - We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set {0, 1} together with this definition of addition and multiplication is a number system called a **finite field** or a **Galois field**, and is denoted by the label **GF(2)**.

GF(2)

• The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

Vector Notation

- $\overrightarrow{\mathbf{v}}$: column vector
- <u>**r**</u>: row vector
- Subscripts represent element indices inside individual vectors.
 - v_i and r_i refer to the *i*th elements inside the vectors $\mathbf{\vec{v}}$ and $\mathbf{\underline{r}}$, respectively.

v₂ : v_i :

 $(r_1, r_2, \dots, r_i, \dots, r_n)$

- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
 - $\vec{\mathbf{v}}^{(1)}$, $\vec{\mathbf{v}}^{(2)}$, ..., $\vec{\mathbf{v}}^{(M)}$ is a list of *M* column vectors
 - $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \dots, \underline{\mathbf{r}}^{(M)}$ is a list of *M* row vectors
 - $\mathbf{\overline{v}}^{(i)}$ and $\mathbf{\underline{r}}^{(i)}$ refer to the *i*th vectors in the corresponding lists.

Linear Block Codes

12

Definition: C is a (binary) linear (block) code if and only if C forms a vector (sub)space (over GF(2)). In case you forgot about the concept of vector space....
Equivalently, this is the same as requiring that if x⁽¹⁾ and x⁽²⁾ ∈ C, then x⁽¹⁾⊕x⁽²⁾ ∈ C.
Note that any (non-empty) linear code C must contain Q.
Take any z ∈ C z ⊕ z ⊕ z must be ∈ e
Ex. The code that we considered in HW4 is C = {00000,01000,10001,11111} Is it a linear code?
x⁽¹⁾ = 01000 ∈ C ⊕ z⁽¹⁾ = 10001 ∈ C ⊕ z⁽¹⁾ = 0 z⁽¹⁾

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the same as matrix multiplication.
 - See next slide.
 - The matrix replaces the table for the codebook.
 - The size of the matrix is only $k \times n$ bits.
 - Compare this against the table (codebook) of size $2^k \times (k + n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
 - Can limit our study to the subclass of linear block codes without sacrificing system performance.

Related Idea:

Even Parity vs. Odd Parity

- Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8th bit as a parity bit.
- Two options:
 - Even Parity: Added bit ensures an <u>even</u> number of 1s in each codeword.
 - A: 10000010
 - Odd Parity: Added bit ensures an <u>odd</u> number of 1s in each codeword.
 - A: 10000011

Even Parity vs. Odd Parity

- Even parity and odd parity are properties of a codeword (a vector), not a bit.
- Note: The generator matrix $\mathbf{G} = [\mathbf{I}_{k \times k}; \underline{\mathbf{1}}^T]$ previously considered produces even parity codeword

$$\mathbf{x} = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix}; \sum_{j=1}^{k} b_j \end{bmatrix} \quad \text{inside } \mathbf{x}$$

(Q always has even parity)

of all elements

• Q: Consider a code that uses odd parity. Is it linear?

Odd parity is not a linear code.

Reason: Q is not a member.

Error Control using Parity Bit

- If an odd number of bits (including the parity bit) are transmitted incorrectly, the parity bit will be incorrect, thus indicating that a parity error occurred in the transmission.
- Ex.

19

Error Detection

- Two types of **error control**:
 - 1. error detection
 - 2. error correction
- **PError detection**: the determination of whether errors are present in a received word.
- An error pattern is **undetectable** if and only if it causes the received word to be a valid codeword other than that which was transmitted.
 - Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

Error Correction

- In FEC (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a **decoding error**.

21

Weight and Distance

- The **weight** of a codeword <u>**x**</u> or an error pattern <u>**e**</u> is the number of nonzero coordinates in the codeword or the error pattern.
 - The weight of a codeword $\underline{\mathbf{x}}$ is commonly written as $\boldsymbol{w}(\underline{\mathbf{x}})$.
 - Ex. w(010111) = **†**
- The **Hamming distance** between two *n*-bit blocks is the number of coordinates in which the two blocks differ.
 - Ex. d(010111,011011) = 2
 - Note: $d(\underline{x},\underline{Y}) = w(\underline{x}\oplus\underline{Y}) = w(\underline{e})$

Review: Minimum Distance (d_{\min})

The **minimum distance** (d_{\min}) of a block code is the minimum Hamming distance between all distinct pairs of codewords.

HW4 **Problem 2.** A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d_{min} among the codewords?

d_{\min} : two important facts

- For any linear block code, the **minimum distance** (d_{\min}) can be found from minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.

A code with minimum distance d_{\min} can

- detect all error patterns of weight $w \leq d_{\min}$ -1.
- correct all error patterns of weight $w \leq \left| \frac{d_{\min} 1}{2} \right|$.

the floor function

25