4.4 Energy and Power

Definition 4.27. For a signal g(t), the instantaneous power p(t) dissipated
in the 1-Q resister is p,(t) = |g(t)|* regardless of whether g(t) represents a
voltage or a current. To emphasize the fact that this power is based upon
unity resistance, it is often referred to as the normalized power.

Definition 4.28. The total (normalized) energy of a signal g(t) is given

by - -
Eg:/ pg(t)dt:/ lg()" dt = hm/ ()| dt.

4.29. By the Parseval’s theorem discussed in 2.39, we have

g= [ lofa= [ 6.

Definition 4.30. The average (normalized) power of a signal g(t) is given

by
T/2
Th—I>IOlO_ / lg (1)]dt = hm —/_ t)|? dt. < l9ttr)* )
~T/2

Definition 4.31. To simplify the notation, there are two operators that

used angle brackets to define two frequently-used integrals: Seme propertieo fo- T}l':',
average oferen
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T/2 T
(@) = (g (1)) = lim l/ o (t)dt = lim QLT/_T o(t)dt  (46)
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(a) The ‘ftimeJaverage” operator:

(b) The inner-product operator:

oo

(= @wmmm:[gwM@ﬁ (47)
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4.32. Using the above definition, we may write When £4,,9,> =0,
o B, =(g,9) = (G,G) where G = F{g} we say 4, ord 5, ove
or the c_'ar\a\
o 7= (o) el
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e Parseval’s theorem: (g1, g2) = (G1,G9)
where G1 = F {g1} and Gy = F {g2}

4.33. Time-Averaging over Periodic Signal: For periodiemsignal ¢(t) with
period Ty, the time-average operation in (46| can be simplified to

(g) = ~

[o Tar1 "'*-
— t)dt
T, g(1)

P
where the integration is performed over a period of ¢. °
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Similarly, (sin (27 fot + 0)) = { °

i E a- Tn"'a
: Sin & A:O.é
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Example 4.36. (e/®m00)) — (cos (27 fot £6) +Fsin (2mfot +0))
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Example 4.37. Suppose g(t) = ce/>™! for some (possibly complex-valiied) ™ T
constant ¢ and (real-valued) frequency fy. Find P,.

. L2
ng = L lgo)* ) = < ,cc""m{‘tlz> = L e = le1? Pfl:b‘ =1
4.38. When the signal g(t) can be expressed in the form g(t) = 3 ¢ e/?™/x

k
and the _then its (average) power can be calculated from

Pg:Z|0k|2
k
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Example 4.39. Suppose ¢(t) @‘76“ —+@38”. Find P,. g
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Example 4.40. Suppose g(t) = 2¢/5™ 4 3e/™. Find P,.
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Example 4.41. Suppose g(t) = cos (27 fot + 0). Find P,
Here, there are several ways to calculate F,. We can simply use Ex-

ample [4.35 Alternatively, we can first decompose the cosine into complex
exponential functions using the Euler’s formula:

= |C C,| = —X1 Z —
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4.42. The (average) power of a sinusoidal signal ¢g(t) = A cos(27 fot 4 0) is

sl AP fo#0
= J 21415 :
Fy { |A|*cos20, fo=0.

This property means any sinusoid with nonzero frequency can be written in
the form

g(t) = /2P, cos (2rfot +0) .
4.43. Extension of |4.42; Consider sinusoids Ay, cos (27 fit + 6)) whose freg
Gienciesiarerpositiverandidistifict. The (average) power of their sum

g(t) = Ay cos (2 fyt + Oy)
k
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Example 4.44. Suppose g (t) = 2 cos (27r\/_t) + 4 cos (27T\/_t) Find P,.
P _2° .4t ,_.1(*1-”:.)

9 2 2

4.45. For periodic signal g(t) with period T}, there is also no need to carry

out the limiting operation to find its (average) power P,. We only need to
find an average carried out over a single period:

1 17 ;’ 1 ‘,
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L (a) When the corresponding Fourier series expansion g(t) = > ¢,e/™

n=—00
is known,
o0
=2 laf
k=—o00

(b) When the signal ¢(¢) is real-valued and its (compact) trigonometric

o0
Fourier series expansion g(t) = co+2 ) |cx| cos (kwot + Zcy) is known,

o0
P, =c+ 22 x|
k=1

Definition 4.46. Based on Definitions .28 and [4.30, we can define three
distinct classes of signals:

(a) If E, is finite and nonzero, g is referred to as an energy signal.
(b) If P, is finite and nonzero, g is referred to as a power signal.

(c) Some signald”| are neither energy nor power signals.

e Note that the power signal has infinite energy and an energy signal has
zero average power; thus the two categories are mutually exclusive.
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Example 4.47. Rectangular pulse

Consider g(t) = t~1/41, «)(t), with to > 0.
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Example 4.48. Sinc pulse"'l\/" I 1\/1 3 t
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Example 4.49. For a > 0, g(t) = Ae™ 1 «)(t) is an energy signal with

= |A]2/2a.

Example 4.50. The rotating phasor signal g(t) = Al fot+0) i a power
signal with P, = |A|*.

Example 4.51. The sinusoidal signal g(t) = Acos(27 fot + 6) is a power
signal with P, = |AJ*/2.

4.52. Consider the transmitted signal
x(t) = m(t) cos(2m f.t + 0)

in DSB-SC modulation. Suppose M(f — f.) and M(f + f.) do not overlap
(in the frequency domain).

(a) If m(t) is a power signal w1th power, P, then the ayerage transmltted

power is , % *'a—‘| * - |a"| |20 A% - - a"]
) 1 - \ﬁ.l L_,J _alogt
\\Proa_‘,’ Px:§Pm *e +"'T
m(£) x(;f)
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(b) If m(¢) is an energy signal with energy FE,,, then the transmitted energy
is ]

e Q: Why is the power (or energy) reduced?

L K 1
wm(k) cos C )

e Remark: When x(t) = v/2m(t)cos(2nf.t + ) (with no overlapping
between M(f — f.) and M(f + f.)), we have P, = P,,.
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