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Abstract—We consider a downlink OFDMA subcarrier alloca-
tion problem where the allocation algorithms are gradient-based
but only CSI for some subet of subcarriers from each user is
available at the transmitter. We propose an iterative version of
gradient-based OFDMA subcarrier allocation schedulers which
performs better than the standard non-iterative gradient-based
schedulers. In addition, we propose an adaptive, weighted M-
Best feedback mechanism (called wM-Best) suitable for gradient-
based schedulers than the standard M-Best feedback. Simulation
results show improvement of system performance metrics, in term
of average throughput and queue length (or equivalently average
delay), of the iterative scheduler and also the wM-Best feedback.

I. INTRODUCTION

In OFDMA downlink systems, it is well known that if
the base station knows the channel gain or fading of every
subcarrier for every user, the subcarriers can be allocated adap-
tively to different users in order to exploit multi-user diversity
and hence improving the system performance. Having perfect
channel knowledge (or channel state information (CSI)) at the
transmitter, adaptive subchannel schemes achieve very good
performance [1].

However, in practical systems, a perfect channel knowledge
is hardly available at the transmitter due to the large amount
of feedback overheads. For example, for a single-antenna
system with K users and N subcarriers, there are KN real-
valued CSI feedback values that need to be reported every
scheduling period. The overhead will be further multiplied
in multi-antenna (MIMO) OFDMA system. A number of
feedback reduction schemes have been proposed. For example,
the feedback CSI may be quantized [2], multiple subcarriers
may be grouped into a subchannel and only one bit of CSI
is reported for every subcarrier in the subchannel [3], and
each user only reports its M best subcarriers (called M-Best
feedback) [4].

A important observation to reduce the feedback overhead
is to opportunistically feedback only from the users that are
most likely to be allocated the resources [5]. In this paper,
we introduce a partial CSI feedback scheme called Weighted
M-Best (wM-Best), which is a modified version of the M-
Best feedback, where each user feed backs the CSI of some
number of its best subcarriers. The number of CSI feedbacks a
user reports depend on the CSI weighted by the queue length

(queue state information, QSI) of the user at the base station.
These weights are also used by the scheduler to allocate the
OFDM subcarriers to users.

In this paper, we consider gradient-based subcarrier sched-
ulers which assign subcarriers or equivalently select the trans-
mission rate of each user that maximizes the projection onto
the gradient of the system’s total utility [6]–[8]. The gradient-
based schedulers cover a general range of algorithms rang-
ing from proportionally-fair (PF) algorithms to throughput-
optimal algorithms such as Max-Weight [9]. In addition to
a comparison of existing gradient-based schedulers, we also
propose a new gradient-based subcarrier allocation algorithm
which is an iterative version of the existing algorithms. Shown
by simulation, our proposed algorithm performs better than
the existing (non-iterative) gradient-based schedulers since
the utility weights are not updated as subcarriers are being
assigned. The iterative concept of gradient-based algorithms
is taken from the iterative algorithms proposed in [10]–[12].
Our proposed algorithm is adapted from the iterative subcarrier
allocation algorithm proposed in [11] but we include consid-
eration of utility weights in the allocation. The algorithm in
[11] can be considered as two-dimensional allocation scheme,
where the algorithm finds the highest channel-gain both in
row and column. However, the algorithm does not include the
queue information in the allocation decisions.

In summary, the contribution of this paper is as following:

• Propose an adaptive, weighted M-Best feedback (called
wM-Best) scheme which works well with gradient-based
subcarrier allocation algorithms.

• Propose an iterative gradient-based scheduler which al-
locates subcarriers iteratively based on CSI and QSI
while updates the queue-length weights in the subcarrier
allocation algorithm.

• Show by simulation the improved performance of the
proposed wM-Best feedback scheme and the iterative
subcarrier allocation algorithm with the reference case of
perfect CSI knowledge and the standard M-Best feedback
scheme and the non-iterative gradient-based schedulers.

The rest of this paper is organized as follow. The problem
formulation is described in Section II. Detailed descriptions
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Figure 1. Multi-queue-multi-server allocation problem with time-varying
connectivities

of the various feedback types and gradient-based resource
allocation algorithms are also presented in this section. Sec-
tion III shows the results of our performance evaluation.
Finally, Section IV concludes the paper.

II. PROBLEM FORMULATION

Consider a downlink single-hop OFDMA system composed
of a base station (BS) and K users. There are N OFDM
subcarriers. Time is divided into TDM timeslots. The users
are homogeneous, i.e. they see statistically symmetric arrival
and channel processes and have the same priority. Packets of
fixed size arrive stochastically for each user. To accommodate
the randomness in the arrival streams, there are K queues at
the base station, one for each user, to buffer the data. Each
user has an infinite buffer to store the data packets that cannot
be immediately transmitted. At the beginning of each timeslot,
the assignment of subcarriers to users is made by a centralized
resource manager at the base station. The resource manager
has perfect knowledge of the queue backlogs but a partial
knowledge of the channel states. We do not allow sharing
of any subcarriers. The assignment is announced immediately
to all users via a separate control channel. In this paper,
we assume that the transmit power of the base station is
allocated evenly across all OFDM subcarriers, i.e., we assume
no water-filling-type power loading.As a result of equal power
loading, random fading channel conditions can be mapped into
a matrix of rates. As in [13], this OFDMA subcarrier allocation
problem with stochastic arrivals and channels can be modeled
as a multi-queue multi-server scheduling problem as shown
in Figure 1 where the time-varying rate matrix is the service
capacity matrix of the K servers.

We use the following notation: at the beginning of timeslot
t, the queue length or backlog (in packets) and the running-
average throughput up to timeslot t of user i are denoted by
Qi(t) and Wi(t), respectively. During timeslot t, the number
of packets arrival to queue i is ai(t) and the number of packets

that could be served by subcarrier j from user i is rij(t). The
assignment variable sij(t) = 1 means subcarrier j is assigned
to user i and sij(t) = 0 otherwise. Note that

∑K
i=1 sij ≤ 1 for

all j = 1, . . . , N since sharing of subcarriers is not allowed.
With some abuse of notation, we define the total feasible

rate (or number of served packets) of user i during timeslot t
as ri(t), where

ri(t) :=
K∑

j=1

sij(t)rij(t). (1)

The dynamics of the queue length for queue i are given as

Qi(t + 1) = [Qi(t)− ri(t)]+ + ai(t), (2)

where [x]+ = max {0, x} for any real x. In addition, the
dynamics of the running-average throughput of user i are given
as

Wi(t + 1) = θWi(t) + (1− θ)min (Qi(t), ri(t)) , (3)

where the constant θ ∈ [0, 1] specifies how much the running-
average depends on the current throughput.

In this paper, we consider an i.i.d. traffic arrival model
across users and timeslots.Specifically, the number of fixed-
size packets arriving to user i during timeslot t, ai(t), is
modeled as an i.i.d. Poisson random variable with mean λ
packets/timeslot.

A. Channel Model

To determine the rate matrix [rij ], we assume a block fast-
fading channel where for each user the gains of the OFDM
subcarriers are independent over timeslots but, within the
same timeslot, the gains may be correlated. Specifically, we
assume an L-tap delay line channel model [14]. For each
user, the channel consists of L = �BW/Δfc� independent
resolvable paths where BW and Δfc are the total bandwidth
and the coherence bandwidth of the system (assume the same
for all users for simplicity), respectively, and each path has
equal power. The channel impulse response between the base
station and user i is hi(t) =

∑L−1
l=0 hilδ(t − l/BW ) where

[hil] are modeled as independent identically distributed (i.i.d)
circularly symmetric complex Gaussian random variables with
distribution CN(0, 1/L). For each user i, the N -dimensional
subcarrier gains [Hij(t)] are calculated from the N -point FFT
of the channel impulse response hi(t).

We assume that the base station has a maximum transmit
power of P and divides this power equally among all N
subcarriers. With perfect channel estimation at the receiver, the
feasible number of packets that could be served from queue
i by subcarrier j during timeslot t is related to the signal-to-
noise ratio and given as

rij(t) = γ
BW

N
log2

(
1 + 0.56

P

N
|Hij(t)|2

)
, (4)

where γ is the ratio of the number of OFDM symbols/timeslot
over the packet size (in bits) and we assume the noise power
is normalized to be one for simplicity and the constant coef-
ficient 0.56 accounts for the SNR gap according to practical
modulation and coding limitations [7].



B. Gradient-Based Subcarrier Allocation Scheduling Algo-
rithms

The subcarrier allocation algorithms are based on the
gradient-based scheduling frameworks, which allocate chan-
nels that maximize the projection onto the gradient of the
system’s total utility The gradient-based schedulers are se-
lected since they include scheduling algorithms ranging from
proportionally fairness, Max-SNR, to Max-Weight algorithms.

Specifically, the system’s total utility function is given
as U(W (t)) :=

∑K
i=1 Ui(Wi(t)), where Ui(Wi(t)) is an

increasing concave utility function of user i’s running-average
throughput Wi(t) up to time t. An example of utility functions
is

Ui(Wi(t)) =

{
ci

α (Wi(t))α, α ≤ 1, α �= 0,

ci log(Wi(t)), α = 0,
(5)

where α ≤ 1 is the fairness parameter and ci is the QoS
weight [7]. For this utility function, the gradient-based sched-
uler select the rate vector which is the solution to

max
[r1(t),...,rK(t)]∈Rt

K∑
i=1

ci(Wi(t))α−1ri(t), (6)

where Rt is the feasible rate region given the reported channel-
gains at timeslot t. Note that setting α = 1 results in a
scheduling rule that maximizes the total throughput during
each timeslot (i.e., the Max-SNR rule), while setting α = 0
results in the proportionally fair rule. Other intermediate values
of α ∈ (0, 1) provides a trade off between total throughput and
fairness. As stated in [7], the gradient-based algorithms can be
generalized to the problem of

max
[r1(t),...,rK(t)]∈Rt

K∑
i=1

μi(t)ri(t), (7)

where μi(t) is the time-varying weight assigned to user i at
time t. This weight can be the gradient of the running-average
throughput as given above or can be a function of the queue
length and/or delay such as in the Max-Weight algorithms [9].

Due to the multi-server (or multi-subcarrier) nature of the
OFDMA subcarrier allocation problems, the rate ri(t) of user i
during timeslot t, as given in (1), is a composition of the rates
from all its assigned servers. Furthermore, within the same
timeslot, the weight of user i which depends on its queue
length changes as the scheduler assigns it a server. As will be
shown by simulation, ignoring this fact in the gradient-based
schedulers results in too many servers assigned to the users
with long queues at the beginning of the timeslot. This results
in smaller total throughput and hence less multi-user diversity
gain.

Hence, in our study, we are interested in evaluating the
performance of the following two versions of gradient-based
schedulers: non-iterative and iterative and with different values
of the fairness parameter α and partial CSI feedback schemes
which will be described later.

1) Non-Iterative Gradient-Based Schedulers: These sched-
ulers are the gradient-based schedulers that solve (7). In this
paper, we divide the algorithms into two types depending
on the value of α and the definition of the weight μi(t).
Specifically, we let the weight μi(t) of user i in (7) to be

μi(t) =

{
(Wi(t))α−1, α ∈ [0, 1],
(Qi(t))α−1, α > 1,

(8)

where we assume ci = 1 for simplicity and Wi(t) and Qi(t)
are the running-average throughput and the queue length of
user i, respectively, at the beginning of the timeslot t. These
two values are not updated as subcarriers are being assigned
to users. Note that by changing the dependency of the weights
on either running-averages or queue lengths, we have gradient-
based algorithms (when α ∈ [0, 1]) described in [7] and queue-
based max-weight algorithms (when α > 1), respectively.

Since the weights μi(t) for all i stay constant during
allocation of all subcarriers, the subcarrier allocation can be
decomposed into a sequential allocation where the scheduler
allocates each subcarrier one by one in any ordering and
subcarrier j is allocated to the user with the largest value of
μi(t)rij(t), where ties are broken randomly.

2) Iterative Gradient-Based Scheduler: As observed earlier,
for the max-weight algorithms which use queue lengths as
weights, not adjusting the queue lengths as users are assigned
subcarriers should result in over assignment to long queues
and a degradation in the system performance. Hence, we
propose a heuristic but iterative version of the gradient-based
schedulers where subcarriers are allocated one by one and
the queue lengths are updated as subcarriers are assigned.
Specifically, consider an example where the scheduler has just
assigned subcarrier j to user i∗ who has the largest value of
Qi(t)rij(t). Then the scheduler updates the queue length of
user i∗ to [Qi∗(t) − ri∗j(t)]+ and then continues allocating
another unassigned subcarrier with this new value of Qi∗(t).
However, the performance of this heuristic algorithm depends
on the order of which subcarriers are allocated first.

In this paper we propose the following heuristic algorithm
which is adapted from the two-dimensional subcarrier alloca-
tion proposed [11] which considers only CSI. Our algorithm
takes into account both the queue lengths (QSI) and channel
(CSI) knowledge. Note that other iterative OFDMA subcarrier
allocations based on CSI and QSI have also been proposed
[10], [12].

Iterative Gradient-Based Scheduler:
Initialize: sik = 0 for all i and k, V = {1, . . . , N}, G = ∅,
and j = 1.

1) Given the weighted-rate matrix [Qirij ] and subcarrier
j, select user i∗ that has the largest (non-zero) value of
Qirij , where ties are broken randomly.

2) Check whether Qi∗ri∗j is the largest among all Qi∗ri∗k

for k ∈ V .

a) If yes, assign subcarrier j to user i∗ (i.e., set si∗j =
1). Update V ← V −{j}∪G, G← ∅, and Qi∗ ←



[Qi∗ − ri∗j ]+. Update the [Qirij ] matrix with the
new value of Qi∗ .

b) If no, update V ← V − {j} and G← G ∪ {j}.
3) Pick the first subcarrier j in V and repeat steps 1) and

2) until either V = ∅ or Qirik = 0 for all i = 1 . . . , K
and for all k ∈ V .

In the above algorithm, the set V keeps track of unassigned
subcarriers that have not been attempted at allocation while
the set G keeps track of the unassigned subcarriers which
have been attempted at allocation. G is re-initialized to an
empty set every time an unassigned subcarrier is successfully
assigned. The concept of the above heuristic algorithm is that
it attempts to find the subcarrier j∗ and user i∗ which has
the largest value of Qirij among all unassigned subcarriers or
while the queues are not all zero, where Qi is updated each
time a subcarrier is assigned.

An example of the iterative gradient-based scheduler with
3 users and 3 subcarriers can be illustrated as follows:
Initial Parameters:

[Qi] =
[
5.2 4.4 4.5

]
,

[rij ] =

⎡
⎣1.0 0.9 1.3
1.7 0.4 0.6
1.8 1.1 0.7

⎤
⎦ and [Qirij ] =

⎡
⎣5.2 4.7 6.8
7.5 1.8 2.6
8.1 5.0 3.2

⎤
⎦

Iteration 1: start with subcarrier 1. It is assigned to user 3 and
the queue length of the user is updated to be 4.5− 1.8 = 2.7.
The updated queue lengths and [Qirij ] matrix (with the first
column removed since subcarrier 1 has been assigned) are

[Qi] =
[
5.2 4.4 2.7

]
and [Qirij ] =

⎡
⎣− 4.7 6.8
− 1.8 2.6
− 3.0 1.9

⎤
⎦

Iteration 2: start with subcarrier 2. User 1 has the highest Qiri2

at 4.7 which is less than Q1r13 = 6.8. Hence, the scheduler
moves to consider subcarrier 3 which is the only subcarrier in
V . Subcarrier 3 is then assigned to user 1. The updated queue
lengths and [Qirij ] matrix (with the first and third columns
removed since subcarrier 3 has just been assigned) are

[Qi] =
[
3.9 4.4 2.7

]
and [Qirij ] =

⎡
⎣− 3.5 −
− 1.8 −
− 3.0 −

⎤
⎦

Iteration 3: Start with subcarrier 2, which is the only unas-
signed subcarrier. Assign it to user 1.
Hence, for the iterative scheduler the subcarrier alloction
matrix and the queue lengths at the end of the current timeslot
are

[sij ] =

⎡
⎣0 1 1
0 0 0
1 0 0

⎤
⎦ and [Qi] =

[
3.0 4.4 2.7

]
.

Comparing these results with those under non-iterative sched-
uler, we see that the allocation matrix and the queue lengths

at the end of the current timeslot are

[sij ] =

⎡
⎣0 0 1

0 0 0
1 1 0

⎤
⎦ and [Qi] =

[
3.9 4.4 1.6

]
.

Note that it is demonstrated via this example that the algorithm
does terminate and reach an allocation.

C. CSI Feedback

In this paper we study the performance of several subcarrier
allocation algorithms with a partial CSI knowledge. Specifi-
cally, we consider the situation where the channel gains for all
subcarriers and users are estimated perfectly but only CSI of
some selected subcarriers from each user are fed back to the
BS. We consider three types of feedback mechanisms: full CSI
feedback, M-Best feedback, and weighted M-Best feedback.

1) Full CSI feedback: This provides the best performance
compared with the others and hence provides a benchmark
for comparison. However, the feedback overhead is relatively
high since we require NKBreal bits per timeslot where Breal

is the number of bits required to quantize a real number with
negligible quantization error.

2) M-Best Feedback (M-Best): Each user feeds back via an
uplink feedback timeslot to the BS only its M highest channel-
gains and their corresponding subcarrier numbers, where M
is constant for all users and timeslots [4]. We assume that
any subcarrier j of user i whose gain is not reported has rate
rij(t) = 0, while the reported subcarrier has the rate given in
(4).

3) Weighted M-Best Feedback (wM-Best): Since the
gradient-based schedulers allocate subcarriers based on not
only the channel-gains but the running-average throughputs
or queue lengths as well, this means users with large queue
lengths or running-average throughputs are likely to be al-
located more subcarriers and hence they should report more
number of their best subcarriers. This observation motivates
an adaptive version of the M-Best feedback mechanism, called
wM-Best, where we should adapt the value of M depending
on the current weights specified by the scheduler. That is, the
user i at the beginning of timeslot t reports its Mi(t) best
subcarriers where

Mi(t) =

⌈
μi(t)∑K

k=1 μk(t)
KM

⌉
. (9)

Note that M-Best is a special case of wM-Best when μi(t) is
all equal for all i. The total number of feedback channel-gains
from all K users is kept roughly (due to ceiling in (9)) at the
same value KM as in M-Best. In addition, we expect that wM-
Best should be more suitable than M-Best in the scenarios of
heterogeneous users and/or channels as well. Note that before
the start of timeslot t, wM-Best requires the BS to inform each
user i the value of its Mi(t).

III. SIMULATION STUDY

Here we provide a performance simulation of the non-
iterative and iterative gradient-based schedulers with different
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Figure 2. Comparison of the average throughput and average queue length
for different schedulers with full CSI feedback.

full and partial CSI feedback mechanisms. For the non-
iterative schedulers, we consider the schedulers with α =
0, 0.5, 1, 2, and 4. Recall that the scheduler is proportionally
fair when α = 0, Max-SNR when α = 1, and MaxWeight
when α > 1. The case of α = 0.5 provides a intermediate
scheduler that balances fairness and throughput. To compare
the performance of the iterative scheduler over non-iterative
scheduler, we consider only the MaxWeight scheduler when
α = 2.

The simulation is performed with N = 64 subcarriers and
K = 64 users under 200 timeslots. We use the L-tap delay line
channel with L = 10. The average received SNR per subcarrier
is 10 dB. Packet size and OFDM parameters are selected such
that the system capacity is about 9 packets/user/timeslot. The
first simulation result compares the average throughput and
average queue length for different non-iterative and iterative
schedulers to show the improved performance of the iterative
scheduler with full CSI. The second simulation result shows
the dependency of the performance on the value of M in the
M-Best and wM-Best feedbacks.

First, Figure 2 shows the average throughput and average
queue length, averaged over all users and timeslots, at different
packet arrival rate λ under full CSI. The proposed iterative
scheduler provides better average throughput and queue length
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(b) Standard deviation of the number of assigned users

Figure 3. The average and standard deviation of the number of assigned
users in each time slot

than all non-iterative schedulers, especially when the arrival
rate is high. The improved performance can be traced back
to the fact that the iterative scheduler allocates subcarriers to
many more number of users, as shown in Figure 3 which
shows the average and standard deviation of the number of
users who are assigned some subcarriers. At low packet arrival
rates, the iterative scheduler serves almost every user while
the non-iterative schedulers serve less than 20 users. Hence,
the non-iterative schedulers over assign subcarriers to some
users who may not have enough data in the queues to send
over those assigned subcarriers. This results in a waste of
subcarrier capacity and hence reduced system performance.
This confirms the intuition provided in [12] that, to have small
queues and hence small delays, the scheduler should serve as
many users as possible during each timeslot. Note that the
graphs for the Max-SNR scheduler in Figures 3(a) and 3(b)
are constant regardless of arrival rates because the scheduler
does not use queue lengths. Also note that the MaxWeight
scheduler with α = 4 serves the fewest number of users since
it puts too much weights on the queue lengths over the rates.

Figure 2 also shows that, among the non-iterative
running-average-throughput-based schedulers (i.e., when α =
0, 0.5, 1), the scheduler with α = 0.5 surprisingly shows
a better performance than the PF or Max-SNR schedulers
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Figure 4. Average throughput of non-iterative and iterative MaxWeight
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(α = 0 and 1, respectively) at the arrival rates less than
the system capacity (i.e., for λ ≤ 9). This shows that, with
the non-iterative weights, concerning too much on fairness
like in PF scheduler (i.e., making sure that every user has
similar running-average throughput) or too much on the sum
throughput degrades the system performance compared to the
scheduler that balances fairness and throughput.

Next, we show the improved performance of wM-Best
feedback over M-Best feedback, under iterative and non-
iterative MaxWeight schedulers (i.e., α = 2). Figure 4 shows
the average throughputs against different values of M where
λ = 7.5. The figures show that the performance with the wM-
Best feedback is better than that with M-Best feedback. Note
that given a feedback scheme there is very little performance
difference between non-iterative and iterative schedulers. The
reason could be seen from Figure 5 which shows the average
number of served users for all schedulers with wM-Best
feedback. Let us consider only the α = 2 schedulers. At low
values of M the iterative and non-iterative schedulers serve
about the same number of users on average. Although the non-
iterative scheduler serves less users as M gets larger, there is
enough number of CSI reports (i.e., KM CSI values) so that
the system performance is not affected by the non-adaptiveness
of the weights [Qi(t)].

IV. CONCLUSIONS

In this paper, we propose an iterative gradient-based
OFDMA subcarrier allocation scheduler which, as shown by
simulation, performs better than the standard non-iterative
gradient-based scheduler. In addition, we propose the wM-
Best feedback mechanism suitable for gradient-based sched-
ulers than the standard M-Best feedback. Simulation results
show improvement of system performance metrics, in term of
average throughput and queue length (or equivalently average
delay), of the iterative scheduler and the wM-Best feedback.
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