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Communication systems are usually viewed and analyzed in frequency domain. This
note reviews some basic properties of Fourier transform and introduce basic communication
systems.
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1 Introduction to Signals

1.1 Dirac Delta Function

The (Dirac) delta function or (unit) impulse function is denoted by δ(t). It is usually
depicted as a vertical arrow at the origin. Note that δ(t) is not a true function; it is
undefined at t = 0. We define δ(t) as a generalized function which satisfies the sampling
property (or sifting property) ∫

φ(t)δ(t)dt = φ(0)

for any function φ(t) which is continuous at t = 0. From this definition, It follows that

(δ ∗ φ)(t) = (φ ∗ δ)(t) =

∫
φ(τ)δ(t− τ)dτ = φ(t)

where we assume that φ is continuous at t. Intuitively we may visualize δ(t) as an infinitely
tall, infinitely narrow rectangular pulse of unit area: lim

ε→0

1
ε
1
[
|t| ≤ ε

2

]
.

We list some interesting properties of δ(t) here.

• δ(t) = 0 when t 6= 0.
δ(t− T ) = 0 for t 6= T .

•
∫
A
δ(t)dt = 1A(0).

(a)
∫
δ(t)dt = 1.

(b)
∫
{0} δ(t)dt = 1.

(c)
∫ x
−∞ δ(t)dt = 1[0,∞)(x). Hence, we may think of δ(t) as the “derivative” of the

unit step function U(t) = 1[0,∞)(x).

•
∫
φ(t)δ(t)dt = φ(0) for φ continuous at 0.

•
∫
φ(t)δ(t− T )dt = φ(T ) for φ continuous at T . In fact, for any ε > 0,∫ T+ε

T−ε
φ(t)δ(t− T )dt = φ(T ).

• δ(at) = 1
|a|δ(t). In particular,

δ(ω − ω0) = δ(2πf − 2πf0) =
1

2π
δ(f − f0)

when ω = 2πf and ω0 = 2πf0.

• δ(t− t1) ∗ δ(t− t2) = δ (t− (t1 + t2)).

• g(t) ∗ δ(t− t0) = g(t− t0).

• Fourier properties:
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◦ Fourier series: δ(x− a) = 1
2π

+ 1
π

∞∑
k=1

cos(n(x− a)) on [−π, π].

◦ Fourier transform: δ(t) =
∫

1ej2πftdf

• For a function g whose real-values roots are ti,

δ (g (t)) =
n∑
k=1

δ (t− ti)
|g′ (ti)|

(1)

[1, p 387]. Hence, ∫
f(t)δ(g(t))dt =

∑
x:g(x)=0

f(x)

|g′(x)|
. (2)

Note that the (Dirac) delta function is to be distinguished from the discrete time Kro-
necker delta function.

As a finite measure, δ is a unit mass at 0; that is for any set A, we have δ(A) = 1[0 ∈ A].
In which case, we have again

∫
gdδ =

∫
f(x)δ(dx) = g(0) for any measurable g.

For a function g : D → Rn where D ⊂ Rn,

δ(g(x)) =
∑

z:g(z)=0

δ(x− z)

|det dg(z)|
(3)

[1, p 387].

1.2 Fourier Series

Let the (real or complex) signal r (t) be a periodic signal with period T0. Suppose the
following Dirichlet conditions are satisfied

(a) r (t) is absolutely integrable over its period; i.e.,
T0∫
0

|r (t)|dt <∞.

(b) The number of maxima and minima of r (t) in each period is finite.

(c) The number of discontinuities of r (t) in each period is finite.

Then r (t) can be expanded in terms of the complex exponential signals (ejnω0t)
∞
n=−∞ as

r̃ (t) =
∞∑

n=−∞

cne
jnω0t = c0 +

∞∑
k=1

(
cke

jkω0t + c−ke
−jkω0t

)
(4)

where

ω0 = 2πf0 =
2π

T0

,

ck =
1

T0

α+T0∫
α

r (t) e−jkω0tdt, (5)
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for some arbitrary α. In which case,

r̃ (t) =

{
r (t) , if r (t) is continuous at t
r(t+)+r(t−)

2
, if r (t) is not continuous at t

We give some remarks here.

• The parameter α in the limits of the integration (5) is arbitrary. It can be chosen to
simplify computation of the integral. We can simply write ck = 1

T0

∫
T0

r (t) e−jkω0tdt to

emphasize that we only need to integrate over one period of the signal; the starting
point is not important.

• The coefficients ck = 1
T0

∫
T0

r (t) e−jkω0tdt are called the (kth) Fourier (series) coef-

ficients of (the signal) r (t). These are, in general, complex numbers.

• c0 = 1
T0

∫
T0

r (t) dt = average or DC value of r(t)

• The Dirichlet conditions are only sufficient conditions for the existence of the Fourier
series expansion. For some signals that do not satisfy these conditions, we can still
find the Fourier series expansion.

• The quantity f0 = 1
T0

is called the fundamental frequency of the signal r (t).
The nth multiple of the fundamental frequency (for positive n’s) is called the nth
harmonic.

• ckejkω0t + c−ke
−jkω0t = the kth harmonic component of r (t).

k = 1 ⇒ fundamental component of r (t).

• Consider a restricted version rT0(t) of r(t) where we only consider r(t) for one specific

period. Suppose rT0(t)
F−−⇀↽−−
F−1

RT0(f). Then,

ck =
1

T0

RT0(kf0).

So, the Fourier coefficients are simply scaled samples of the Fourier transform.

1.1. Parseval’s Identity: Pr = 1
T0

∫
T0

|r (t)|2 dt =
∞∑

k=−∞
|ck|2

1.2. Real, Odd/Even properties

• If r(t) is even (r(−t) = r(t)), then c−k = ck.

• If r(t) is odd (r(−t) = −r(t)), then c−k = −ck.
• If r(t) is real valued and even, then so is ck as a function of k.

• If r(t)is real-valued and odd, then ck’s are pure imaginary and c−k = −ck
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1.3 Fourier series expansion for real valued function

Suppose r (t) in the previous section is real-valued; that is r∗ = r. Then, we have c−k = c∗k
and we provide here three alternative ways to represent the Fourier series expansion:

r̃ (t) =
∞∑

n=−∞

cne
jnω0t = c0 +

∞∑
k=1

(
cke

jkω0t + c−ke
−jkω0t

)
(6)

= c0 +
∞∑
k=1

(ak cos (kω0t)) +
∞∑
k=1

(bk sin (kω0t)) (7)

= c0 + 2
∞∑
k=1

|ck| cos (kω0t+ ∠ck) (8)

where the corresponding coefficients are obtained from

ck =
1

T0

α+T0∫
α

r (t) e−jkω0tdt =
1

2
(ak − jbk) (9)

ak = 2Re {ck} =
2

T0

∫
T0

r (t) cos (kω0t) dt (10)

bk = −2Im {ck} =
2

T0

∫
T0

r (t) sin (kω0t) dt (11)

|ck| =
√
a2
k + b2

k (12)

∠ck = − arctan

(
bk
ak

)
(13)

c0 =
a0

2
(14)

(15)

The Parseval’s identity can then be expressed as

Pr =
1

T0

∫
T0

|r (t)|2 dt =
∞∑

k=−∞

|ck|2 = c2
0 + 2

∞∑
k=1

|ck|2

1.3. Examples:

• Train of impulses:

δTs(t) =
∞∑

k=−∞

δ (t− kT0) =
1

T0

∞∑
k=−∞

ejkω0t =
1

T0

+
2

T0

∞∑
k=1

cos kω0t (16)
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Figure 1: Train of impulses
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Figure 2: Square pulse periodic signal

• Square pulse periodic signal:

1 [cosω0t ≥ 0] =
1

2
+

2

π

(
cosω0t−

1

3
cos 3ω0t+

1

5
cos 5ω0t−

1

7
cos 7ω0t+ . . .

)
(17)

We note here that multiplication by this signal is a switching function.

• Bipolar square pulse periodic signal:

sgn(cosω0t) =
4

π

(
cosω0t−

1

3
cos 3ω0t+

1

5
cos 5ω0t−

1

7
cos 7ω0t+ . . .

)

1 

-1 

0T  0T−  t

1 

0T  0T−  t

 

Figure 3: Bipolar square pulse periodic signal

1.4 Continuous-Time Fourier transform

The (direct) Fourier transform of g(t) is defined by

Ĝ (ω) =

∞∫
−∞

g (t) e−jωtdt. (18)

We may simply write G = F {g}. Sometimes the magnitude and phase of G are shown
explicitly by writing G = |G| ejθg where both |G| and θg are real-valued functions of ω.
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1

2π

∞∫
−∞

Ĝ (ω) ejωtdω = g (t)
F−−⇀↽−−
F−1

Ĝ (ω) =

∞∫
−∞

g (t) e−jωtdt

In MATLAB, these identities are given by fourier and ifourier. Note also that Ĝ(0) =∫
g(t)dt and g(0) = 1

2π

∫
G(ω)dt.

1.4. Conjugate and Time Inversion (Time Reversal):

g (−t)
F−−⇀↽−−
F−1

Ĝ (−ω)

g∗ (t)
F−−⇀↽−−
F−1

Ĝ∗ (−ω)

g∗ (−t)
F−−⇀↽−−
F−1

Ĝ∗ (ω)

1.5. Shifting properties

• Time-shift: g (t− t1)
F−−⇀↽−−
F−1

e−jωt1G (ω)

• Frequency-shift (or modulation): ejω1tg (t)
F−−⇀↽−−
F−1

Ĝ (ω − ω1)

1.6. Unit impulse:

ejω0t
F−−⇀↽−−
F−1

2πδ (ω − ω0) = δ(f − f0) (19)

∞∑
k=−∞

cke
jkω0t

F−−⇀↽−−
F−1

∞∑
k=−∞

2πckδ (ω − kω0) (20)

δ (t− t0)
F−−⇀↽−−
F−1

e−jωt0 (21)

δ (t)
F−−⇀↽−−
F−1

1 (22)

1
F−−⇀↽−−
F−1

2πδ (ω) (23)

a
F−−⇀↽−−
F−1

a2πδ (ω) (24)

Property (20) is of importance because it shows transform of periodic signal which is
expressed in its Fourier series form (as in (4)). A special case is when the signal is a train
of impulses:

∞∑
n=−∞

δ(t− nT0)
F−−⇀↽−−
F−1

ω0

∞∑
n=−∞

δ(ω − nω0) where ω0 =
2π

T0

.

1.7. Linearity: c1g1 (t) + c2g2 (t)
F−−⇀↽−−
F−1

c1Ĝ1(ω) + Ĝ2(ω).
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1.8. Time-scaling rule: g (at)
F−−⇀↽−−
F−1

1
|a|Ĝ

(
ω
a

)
1.9. Re {g (t)}

F−−⇀↽−−
F−1

1
2

(
Ĝ (ω) + Ĝ∗ (−ω)

)
1.10. Convolution

• Convolution-in-time Rule: g1 (t) ∗ g2 (t)
F−−⇀↽−−
F−1

Ĝ1 (ω) · Ĝ2 (ω).

• Convolution-in-frequency Rule: g1 (t) · g2 (t)
F−−⇀↽−−
F−1

1
2π
Ĝ1 (ω) ∗ Ĝ2 (ω). See also (31).

1.11. Duality: Suppose f (t)
F−−⇀↽−−
F−1

g (ω). Then, g (t)
F−−⇀↽−−
F−1

2πf (−ω).

1.12. Parseval’s theorem:
∞∫
−∞
|g (t)|2 dt = 1

2π

∞∫
−∞

∣∣∣Ĝ (ω)
∣∣∣2dω

1.13. Unit step function:

u (t) = 1 [t ≥ 0]
F−−⇀↽−−
F−1

1

jω
+ πδ (ω) (25)

sgn t =

{
1, t > 0
−1, t < 0

F−−⇀↽−−
F−1

2

jω
(26)

j

πt

F−−⇀↽−−
F−1

sgn(ω) (27)

(g ∗ u)(t) =

∫ t

−∞
g(τ)dτ

F−−⇀↽−−
F−1

1

jω
G(ω) + πG(0)δ(ω) (28)

So, if g (or equivalently, G) is band-limited to |ω| ≤ B, then g ∗ u is also bandlimited to
|ω| ≤ B.

Use heaviside in MATLAB for u(t). For example, (25) can be found by syms t;

fourier(heaviside(t)).

1.14. Exponential: Assume α, σ > 0.

e−αtu (t)
F−−⇀↽−−
F−1

1

α + jω

eαtu (−t)
F−−⇀↽−−
F−1

1

α− jω

e−α|t|
F−−⇀↽−−
F−1

2α

α2 + ω2

te−αtu (t)
F−−⇀↽−−
F−1

1

(α + jω)2

tne−αtu (t)
F−−⇀↽−−
F−1

n!

(α + jω)n+1

ke−αt
2 F−−⇀↽−−
F−1

(
k

√
π

α

)
e−( 1

4α)ω2
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1.15. Modulation:

cos (ωct+ θ)
F−−⇀↽−−
F−1

πδ (ω − ωc) ejθ + πδ (ω + ωc) e
−jθ

sin (ω0t)
F−−⇀↽−−
F−1

π

j
(δ (ω − ω0)− δ (ω + ω0))

gωc,θ(t) = g (t)× cos (ωct+ θ)
F−−⇀↽−−
F−1

1

2
Ĝ (ω − ωc) ejθ +

1

2
Ĝ (ω + ωc) e

−jθ

g (t)× sin (ωct+ θ)
F−−⇀↽−−
F−1

1

2j
Ĝ (ω − ωc) ejθ −

1

2j
Ĝ (ω + ωc) e

−jθ

Suppose g is bandlimited; that is G = 0 for |ω| > ωg = 2πBg. If ωc > ωg, then the

support sets of Ĝ (ω − ωc) and Ĝ (ω + ωc) are disjoint, and hence they are orthogonal in
the frequency domain and their energy added. In which case, Egωc,θ = 1

2
Eg.

1.16. Rectangular and Sinc: Assume a, ω0 > 0.

1 [|t| ≤ a]
F−−⇀↽−−
F−1

sin(2πfa)

πf
=

2 sin (aω)

ω
= 2a sinc (aω) ,

ω0

π
sinc (ω0t) =

sin (ω0t)

πt

F−−⇀↽−−
F−1

1 [|ω| ≤ ω0] .

Note that we can get a triangle from convolution of two identical rectangular waves. In
particular,

1[|t| ≤ a] ∗ 1[|t| ≤ a] = (2a− |t|)× 1[|t| ≤ 2a].

Therefore, (
1− 1

b
|t|
)

1[|t| ≤ b]
F−−⇀↽−−
F−1

b

(
sin πfb

πfb

)2

.

( )0sinc 2 f tπ  

1 

0

1
2 f

 

0

1
f

 

1−

F

F
 t  

0
0

1 1 2
2

f
f
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0

1
2 f
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f  
0

1
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F
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0
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0T  

0

1
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1

0
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T  0
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Figure 4: Fourier transform of sinc and rectangular functions

1.17. Derivative rules:

• Time-derivative rule: d
dt
g (t)

F−−⇀↽−−
F−1

jωĜ (ω)
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• Frequency-derivative rule: −jtg (t)
F−−⇀↽−−
F−1

d
dω
Ĝ (ω)

1.18. Real, Odd, and Even

• Conjugate Symmetry Property: If g (t) is real-valued (g (t) = g∗ (t)), then Ĝ (−ω) =
Ĝ∗ (ω). In particular, |G| is even and θg is odd.

• If g (t) is even (g (t) = g (−t)), then Ĝ (ω) is also even (Ĝ (−ω) = Ĝ (ω))

• If g (t) is odd (g (t) = −g (−t)), then Ĝ (ω) is also odd (Ĝ (−ω) = −Ĝ (ω))

• If g (t) is real and even, then so is Ĝ (ω).

• If g (t) is real and odd, then Ĝ (ω) is pure imaginary and odd.

1.19. A signal cannot be simultaneously time-limited and band-limited.

Proof. Suppose g(t) is simultaneously (1) time-limited to T0 and (2) band-limited to B.
Pick any positive number Ts and positive integer K such that fs = 1

Ts
> 2B and K > T0

Ts
.

The sampled signal gTs(t) is given by

gTs(t) =
∑
k

g[k]δ (t− kTs) =
K∑

k=−K

g[k]δ (t− kTs)

where g[k] = g (kTs). Now, because we sample the signal faster than the Nyquist rate, we
can reconstruct the signal g by producing gTs ∗ hr where the LPF hr is given by

Hr(ω) = Ts1[ω < 2πfc]

with the restriction that B < fc <
1
Ts
−B. In frequency domain, we have

G(ω) =
K∑

k=−K

g[k]e−jkωTsHr(ω).

Consider ω inside the interval I = (2πB, 2πfc). Then,

0
ω>2πB

= G(ω)
ω<2πfc

= Ts

K∑
k=−K

g (kTs) e
−jkωTs z=ejωTs

= Ts

K∑
k=−K

g (kTs) z
−k (29)

Because z 6= 0, we can divide (29) by z−K and then the last term becomes a polynomial of
the form

a2Kz
2K + a2K−1z

2K−1 + · · ·+ a1z + a0.

By fundamental theorem of algebra, this polynomial has only finitely many roots– that is
there are only finitely many values of z = ejωTs which satisfies (29). Because there are
uncountably many values of ω in the interval I and hence uncountably many values of
z = ejωTs which satisfy (29), we have a contradiction.
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1.20. Fourier transform of periodic signal: For any periodic signal r(t) with period T0,
using the Fourier series, we can express it as

r̃ (t) =
∞∑

n=−∞

cne
jnω0t = c0 +

∞∑
k=1

(
cke

jkω0t + c−ke
−jkω0t

)
, (4)

where ω0 = 2πf0 = 2π
T0

. Hence, the fourier transform is

R (f) =
∞∑

n=−∞

cnδ (f − nf0)

1.21. Sometimes, the Fourier transform above is denoted by Ĝ (Ω) to distinguish it from
the DTFT. In which case,

1

2π

∞∫
−∞

Ĝ (Ω) ejΩtdΩ = g (t)
F−−⇀↽−−
F−1

Ĝ (Ω) =

∞∫
−∞

g (t) e−jΩtdt.

Some references define

G (f) =

∞∫
−∞

g (t) e−j2πftdt. (30)

In which case, we have

∞∫
−∞

G (f) ej2πftdf = g (t)
F−−⇀↽−−
F−1

G (f) =

∞∫
−∞

g (t) e−j2πftdt.

This definition eliminates several extra π and 2π factors in the identities resulting from
the definition (18). In particular, there is no factor of 1

2π
in the convolution-in-frequency

formula.

g1 (t) · g2 (t)
F−−⇀↽−−
F−1

G1 (f) ∗G2 (f) (31)

Of course, (18) and (30) are related by

G (f) = Ĝ (Ω)
∣∣∣
Ω=2πf

and Ĝ (Ω) = G (f)|f= Ω
2π
.

2 Energy Signal and Power Signal

For a signal g(t), the instantaneous power p(t) dissipated in the 1-Ω resister is pg(t) = |g(t)|2
regardless of whether g(t) represents a voltage or a current. To emphasize the fact that
this power is based upon unity resistance, it is often referred to as the normalized power.
The total energy of the signal g(t) is then

Eg =

∫
|g(t)|2 dt

11



and the average power is given by

Pg = lim
T→∞

1

T

T/2∫
−T/2

|g (t)|2dt = lim
T→∞

1

2T

∫ T

−T
|g(t)|2 dt.

If Eg is finite and nonzero, g is referred to as an energy signal. If pg is finite and
nonzero, g is referred to as a power signal. Note that the power signal has infinite energy
and an energy signal has zero average power; thus the two categories are mutually exclusive.

2.1 Energy Signal

2.1. Definitions

• Energy: Eg =
∫
|g(t)|2 dt.

• Energy spectral density (ESD): Ψg(t) = |G(ω)|2.

◦ ESD is a positive, real, and even function of ω.

• Time autocorrelation function:

ψg(τ) =

∫
g∗(µ)g(µ+ τ)dµ = g∗(τ) ∗ g(−τ)

=

∫
g(µ)g∗(µ− τ)dµ = g(τ) ∗ g∗(−τ)

◦ ψg is invariant to time-shift in g: Suppose h(t) = g(t− t0), then ψg = ψh.

2.2.

Eg =

∫
|g(t)|2 dt

=
1

2π

∫
|G(ω)|2 dω =

1

2π

∫
Ψg(ω)dω =

∫
Ψg(2πf)df

2.3. ψg(τ)
F−→ Ψg(ω)

2.4. Example

• For g(t) = 1[t0,t0+T ](t), we have ψg(τ) =
(

1− |τ |
T

)
1[−T,T ](τ) and Ψg(ω) = T sinc2

(
ωT
2

)
.

2.5. Suppose g and y are the input and output signals of an LTI system with transfer

function H
(
g → LTI : H → y

)
, then Ψy(ω) = |H(ω)|2 Ψg(ω).
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2.2 Power Signal

2.6. Definitions:

• gT (t) = g (t) 1
[
|t| ≤ T

2

]
• Power: Pg = lim

T→∞
1
T

T/2∫
−T/2

|g (t)|2dt = lim
T→∞

1
T
EgT = 〈g2〉.

• Power spectral density (PSD): Sg(ω) = lim
T→∞

1
T
|GT (ω)|2 = lim

T→∞
1
T

Ψ2
gT

(t)

◦ PSD represents the power per unit bandwidth (in Hz) of the spectral components
at the frequency ω.

◦ PSD is a positive, real, and even function of ω.

• Time autocorrelation function:

Rg (τ) = lim
T→∞

1

T

T/2∫
−T/2

g∗ (µ) g (µ+ τ)dµ = lim
T→∞

1

T

T/2∫
−T/2

g (µ) g∗ (µ− τ)dµ

= 〈g∗ (·) g (·+ τ)〉 = 〈g (·) g∗ (· − τ)〉

◦ Rg (−τ) = R∗g (τ)

2.7.

Pg = lim
T→∞

1

T

T/2∫
−T/2

|g (t)|2dt = lim
T→∞

1

T
EgT =

〈
g2
〉

=
1

2π

∫
Sg(ω)dω =

∫
Sg(2πf)df

2.8. Rg (τ)
F−→ Sg (ω)

2.9. Rg1g2(τ) = lim
T→∞

∫ T/2
−T/2 g1(t)g2(t+ τ)dt

• If g = g1 + g2, then Rg = Rg1 +Rg2 +Rg1g2 +Rg2g1 .

2.10. Examples

• g(t) = a cos (ω0t+ θ)

◦ Rg(τ) = 1
2
a2 cosω0t

◦ Sg(ω) = π
2
a2 (δ(ω − ω0) + δ(ω + ω0))

• Periodic function r(t) = d0 +
∑∞

n=1 dn cos (nω0t+ θn)

◦ Rr(τ) = d2
0 + 1

2

∑∞
n=1 d

2
n cosnω0τ

◦ Sr(ω) = 2πd2
0δ(ω) + π

2

∑∞
n=1 d

2
n (δ(ω − nω0) + δ(ω + nω0))

2.11. Suppose g and y are the input and output signals of an LTI system with transfer

function H
(
g → LTI : H → y

)
, then Sy(ω) = |H(ω)|2 Sg(ω).
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3 Modulation

Let the carrier frequency be at fc [Hz] with corresponding angular frequency ωc = 2πfc.

3.1. Double-sideband suppressed carrier (DSB-SC) modulation:

(a) See Figure 6.

(b) Modulation

(i) Modulated signal: x(t) = m(t) cosωct

(ii) Recall from (1.15) that

gωc,θ(t) = g (t)× cos (ωct+ θ)
F−−⇀↽−−
F−1

1

2
Ĝ (ω − ωc) ejθ +

1

2
Ĝ (ω + ωc) e

−jθ.

Furthermore, if (1) g is bandlimited to |ω| ≤ ωg = 2πBg and (2) |ω| > ωg =
2πBg, then Egωc,θ = 1

2
Eg. This is not true for non-bandlimited g. For example,

take g = 1[0,T ], then∫
g2 (t) cos2 (ωct)dt =

Eg
2

+
1

2ω
cos (ωcT ) sin (ωcT )

where the second term does not vanish for all ωc. It will vanish when ωc →∞.

(iii) To produce the modulated signal m(t) cosωct, we may use the following methods
which generate the modulated signal along with other signals which can be
eliminated by a bandpass filter restricting frequency contents to around ωc.

i. When it is easier to build a squarer than a multiplier, use

(m (t) + c cos (ωct))
2 = m2 (t) + c2 cos2 (ωct) + 2cm (t) cos (ωct)

= m2 (t) +
c2

2
+ 2cm (t) cos (ωct) +

c2

2
cos (2ωct) .

Alternative, can use
(
m(t) + c cos

(
ωc
2
t
))3

.

ii. Multiply m(t) by “any” periodic and even signal r(t) whose period is Tc =
2π
ωc

. Because r(t) is an even function, we know that

r (t) = c0 +
∞∑
k=1

ak cos (kωct).

Therefore,

m(t)r (t) = c0m(t) +
∞∑
k=1

akm(t) cos (kωct).

See also [2, p 157]. In general, for this scheme to work, we need

• a1 6= 0; that is Tc is the “least” period of r;
• ωc > 4πB; that is fc > 2B (to prevent overlapping).
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Figure 5: Modulation of m(t) via even and periodic r(t)

Note that if r(t) is not even, then by (8), the outputted modulated signal
is of the form a1m(t) cos(ωct+ φ1).

iii. Switching modulator : set r(t) to be the square pulse train given by (17).
Multiplying this r(t) to the signal m(t) is equivalent to switching m(t) on
and off periodically.
It is equivalent to periodically turning the switch on (letting m(t) pass
through) for half a period Tc = 1

fc
.

(iv) Need ωc ≥ 2πB

(v) The modulated signal spectrum centered at ωc is composed of two parts: a por-
tion that lies above ωc, known as the upper sideband (USB), and a portion that
lies below ωc, known as the lower sideband (LSB). Hence, this is a modulation
scheme with double sidebands.

(vi) The modulated signal does not contain a discrete component of the carrier fre-
quency ωc.

(c) Demodulation:

(i) Basic idea:

LPF
{(
m (t)

√
2 cosωct

)√
2 cos ((ωc + ∆ω) t+ θ)

}
= m (t) cos ((∆ω) t+ θ) .

Of course, we want ∆ω = 0 and θ = 0; that is the receiver must generate a carrier
in phase and frequency synchronism with the incoming carrier. These demod-
ulators are called synchronous or coherent (also homodyne) demodulator
[2, p 161].

(ii) Suppose the propagation time is τ , then we have

LPF
{(
m (t− τ)

√
2 cos (ωc (t− τ))

)√
2 cos (ωc (t− µ))

}
= m (t− τ) cos (ωc (τ − µ))

At the receiver, we want µ = τ .
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(iii) Envelope detector. See [2, p 168]. Note that this method need m(t) ≥ 0.

(iv) Switching Demodulator :

LPF{m(t) cos(ωct)× 1[cos(ωct) ≥ 0]} =
1

π
m(t) (32)

[2, p 162].

(v) Rectifier Detector : Suppress the negative part of m(t)cos(ωct) using a diode.
This is equivalent to switching demodulator in (32). It is in effect synchronous
detection performed without using a local carrier [2, p 167].
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Figure 6: DSB-SC modulation and demodulation

3.2. Amplitude Modulation (AM ):

ϕAM (t) = (A+m (t)) cosωct = A cosωct︸ ︷︷ ︸
carrier

+m (t) cosωct︸ ︷︷ ︸
sidebands

3.3. Quadrature amplitude modulation (QAM ):

ϕQAM (t) = m1 (t) cos (ωct) +m2 (t) sin (ωct)

LPF {ϕQAM (t) 2 cos ((ωc + ∆ω) t+ δ)} = m1 (t) cos ((∆ω) t+ δ)−m2 (t) sin ((∆ω) t+ δ)

LPF {ϕQAM (t) 2 sin ((ωc + ∆ω) t+ δ)} = m1 (t) sin ((∆ω) t+ δ) +m2 (t) cos ((∆ω) t+ δ)

Definition 3.4 (Instantaneous frequency). Consider a generalized sinusoidal signal

x(t) = A cos θ(t)

where θ(t) is the generalized angle.
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• The generalized angle for conventional sinusoid is ωct+ θ0.

Define the instantaneous frequency ωi at t to be the slope of θ(t) at t; that is

ωi(t) =
d

dt
θ(t).

Therefore,

θ(t) =

∫ t

−∞
ωi(τ)dτ. (33)

• It is tempting to use x̃(t) = A cos (ωi(t)t+ θ0) instead of A cos θ(t) given by (33).
The idea is that we replace the frequency term in the standard sinusoid with the
instantaneous frequency. This can lead to very different results. In particular, the
instantaneous frequency of x̃ is ωi (t) + ω′i (t) t 6= ωi (t).

For example, suppose the instantaneous frequency is given by ωi(t) = t. Then, the
instantaneous frequency of x̃ is 2t which doubles the desired frequency.

Figure 7: Comparison between x̃(t) = cos(t×t) and x(t) = cos
(∫ t

0
τdτ
)

. The “frequencies”

at t = 5 of x and x̃ are 5 and 10, respectively.

3.5. Angle modulation (or exponential modulation)

(a) Generalized angle modulation :

ϕ(t) = A cos (ωct+ θ0 + (m ∗ h)(t))

where h is causal.

(b) Frequency modulation (FM ):

ϕFM (t) = A cos

ωct+ θ0 + kf

t∫
−∞

m (τ)dτ

 .

• The instantaneous frequency is given by

ωi (t) = ωc + kfm (t) .

• h(t) = kf1[0,∞)(t)

• The BW is ≈ 2kfmp where mp is the peak amplitude of m(t).

(c) Phase modulation (PM ):

ϕPM (t) = A cos (ωct+ θ0 + kpm (t))

• h(t) = kpδ(t).

• PM is actually the FM when modulating signal is m′(t) .

• The BW is ≈ 2kfm
′
p where m′p is the peak amplitude of m′(t). (To see this, use

the above observation and the approximation for the BW of FM.)
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Figure 8: PM and FM are inseparable [2, Fig 5.2].

4 Sampling Theorem

A low-pass signal g whose spectrum is band-limited to B Hz (G(ω) = 0 for |ω| > 2πB)
can be reconstructed exactly (without any error) from its sample taken uniformly at a rate
(sampling frequency) Rs > 2B Hz (samples per second).

4.1. The “sampling” can be done by producing

gTs (t) = g (t) rTs (t)

where rTs

(a) is periodic with period Ts = 1
Rs
< 1

2B

(b) has nonzero mean.
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8
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8
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Figure 9: Sampling and Reconstruction
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4.2. Signal Reconstruction : Because rTs is periodic, it has fourier series expansion

r̃ (t) =
∞∑

n=−∞

cne
jnω0t

where ωs = 2πfs = 2π
Ts

. Hence,

GTs(ω) =
∑
n

cnG (ω − nωs).

Suppose 2πB < ωs − 2πB (or equivalently Rs > 2B), then there is no overlapping and we
can get G back by LPF H with cutoff fc ∈ [B,Rs −B). More specifically,

H (ω) =
1

c0

1 [|ω| ≤ ωc]
F−1

−−⇀↽−−
F

h (t) =
ωc
c0π

sinc (ωct) =
2fc
c0

sinc (2πfct) .

4.3. Interpolation formula : Suppose rTs is a train of impulses δTs as in (16). In which
case,

gTs (t) =
∑
k

g [k] δ (t− kTs)

where g [k] = g (kTs). Note that we have c0 = 1
Ts

= fs. Therefore,

H (ω) = Ts1 [|ω| ≤ ωc]
F−1

−−⇀↽−−
F

h (t) =
2fc
fs

sinc (2πfct) .

The filtered output ĝ = gTs ∗ h which is g can now be expressed as a sum

g (t) =
∑
k

g [k]h (t− kTs) =
2fc
fs

∑
k

g [k] sinc (2πfc (t− kTs))

Furthermore, suppose we choose fs = 2B and fc = B, then we have

H (ω) =
1

2B
1 [|ω| ≤ 2πB]

F−1

−−⇀↽−−
F

h (t) = sinc (2πBt) .

In which case,

g (t) =
∑
k

g [k] sinc (2πB (t− kTs)) =
∑
k

g [k] sinc (2πBt− kπ).

4.4. A band pass signal whose spectrum exists over a frequency band fc− B
2
< |f | < fc+

B
2

ha s a bandwidth B Hz. Such a signal is uniquely determined by 2B samples per second.
The sampling scheme uses two interlaced sampling trains, each at a rate of B samples per
second (known as second-order sampling).
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A Trig Identities

A.1. Cosine function

(a) Is an even function: cos(−x) = cos(x).

(b) cos
(
x− π

2

)
= sin(x).

(c) Sum formula:
cos(x± y) = cos x cos y ∓ sinx sin y. (34)

(d) Product-to-Sum Formula:

cos(x) cos(y) =
1

2
(cos(x+ y) = cos(x− y)) .

(e) cosn x =


1

2n−1

n−1
2∑

k=0

(
n
k

)
cos ((n− 2k)x), odd n ≥ 1

1
2n

(
n
2
−1∑

k=0

2
(
n
k

)
cos ((n− 2k)x) +

(
n
n
2

))
, even n ≥ 2

(f) Any two real numbers a, b can be expressed in terms of cosine and sine with the same
amplitude and phase:

(a, b) = (A cos(φ), A sin(φ)) , (35)

where A =
√
a2 + b2 and φ = tan−1 b

a
. This is simply the polar-coordinates from of

point (a, b) on Cartesian coordinates.

A.2. Properties of eix

(a) Euler’s formula : eix = cosx+ i sinx. Hence,

cos (A) = Re
(
ejA
)

=
1

2

(
ejA + e−jA

)
sin (A) = Im

(
ejA
)

= Re
(
−jejA

)
= Re

(
−1

j
ejA
)

=
1

2j

(
ejA − e−jA

)
.

• We can use cosx = 1
2

(eix + e−ix) and sin x = 1
2i

(eix − e−ix) to derive many
trigonometric identities.

In fact, we can combine linear combination of cosine and sine of the same argument
into a single cosine by

A cosω0t+B sinω0t =
√
A2 +B2 cos

(
ω0t− tan−1 B

A

)
.

To see this, note that

A cosω0t+B sinω0t = Re
(
Aejω0t

)
+ Re

(
−jBejω0t

)
= Re

(
(A− jB) ejω0t

)
= Re

(√
A2 +B2e−j tan−1 B

A ejω0t
)
.

Another way to see this is to reexpress the two real numbers A,B using (35) and
then use (34).
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(b) ejx is periodic with period 2π.

(c) Any complex number z = x+jy can be expressed as z =
√
x2 + y2ej tan−1( yx) = |z|ejφ.

• zt = |z|tejφt.

(d) More relationship with sin and cos.

• ejAt + ejBt = 2ej
A+B

2
t cos

(
A−B

2

)
.

• ejAt − ejBt = 2jej
A+B

2
t sin

(
A−B

2

)
• ejAt−ejBt

ejCt−ejDt = ej
(A+B)−(C+D)

2
t sin(A−B2 )

sin(C−D2 )
.
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