

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

SCS 139: Problem Set 1

Due date: Feb 8, 2013 (Friday)

- 1. [Halliday, Resnick, and Walker, 9E, P28.4]
 - •4 An alpha particle travels at a velocity \vec{v} of magnitude 550 m/s through a uniform magnetic field \vec{B} of magnitude 0.045 T. (An alpha particle has a charge of $+3.2 \times 10^{-19}$ C and a mass of 6.6×10^{-27} kg.) The angle between \vec{v} and \vec{B} is 52°. What is the magnitude of (a) the force \vec{F}_B acting on the particle due to the field and
 - (b) the acceleration of the particle due to $\vec{F_B}$? (c) Does the speed of the particle increase, decrease, or remain the same?
- 2. [Halliday, Resnick, and Walker, 9E, P28.21]
 - •21 SSM An electron of kinetic energy 1.20 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 25.0 cm. Find (a) the electron's speed, (b) the magnetic field magnitude, (c) the circling frequency, and (d) the period of the motion.
- 3. [Halliday, Resnick, and Walker, 9E, P28.28]
 - ••28 A particle undergoes uniform circular motion of radius 26.1 μ m in a uniform magnetic field. The magnetic force on the particle has a magnitude of 1.60×10^{-17} N. What is the kinetic energy of the particle?
- 4. [Halliday, Resnick, and Walker, 9E, P28.40]
 - •40 A wire 1.80 m long carries a current of 13.0 A and makes an angle of 35.0° with a uniform magnetic field of magnitude B = 1.50 T. Calculate the magnetic force on the wire.