Sirindhorn International Institute of Technology Thammasat University Department of Common and Graduate Studies

MAS 116: Lecture Notes 9

Semester: 3/2008
Instructors: Dr. Prapun Suksompong

10.3 Partial Sums and Convergence of Series

Definition 10.16. An infinite series is an expression that can be written in the form

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

- The numbers $a_{1}, a_{2}, a_{3}, \ldots$ are called the terms of the series.

Let s_{n} denote the sum of the first n terms of a series. Thus,

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n} .
$$

The number s_{n} is called the nth partial sum of the series.

- The sequence $\left\{s_{n}\right\}_{n=1}^{+\infty}$ is called the sequence of partial sums.
- $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}$.
- In everyday language, the words "sequence" and "series" are often used interchangeably. However, in mathematics there is a difference between the two terms-a sequence is a succession where as a series is a sum.

Example 10.17. The most familiar examples of series occur in the decimal representations of real numbers. For example, when we write $\frac{1}{3}$ in the decimal form $\frac{1}{3}=0.3333 \ldots$, we mean

$$
\frac{1}{3}=0.3+0.03+0.003+0.0003+\cdots
$$

which suggest that the decimal representations of $\frac{1}{3}$ can be viewed as a sum of infinitely many real numbers.

Definition 10.18. Let $\left\{s_{n}\right\}$ be the sequence of partial sums of the series $\sum_{k=1}^{\infty} a_{k}$. If the sequence $\left\{s_{n}\right\}$ converges to a limit S, then the series is said to converge to S, and S is called the sum of the series. We denote this by writing

$$
S=\sum_{k=1}^{\infty} a_{k} .
$$

If the sequence of partial sum diverges, then the series is said to diverge. A divergent series has no sum.

Example 10.19. Telescoping Sum: Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges or diverges. If it converges, find the sum.
Solution: We will first try to rewrite the partial sum in closed form:

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=1}^{n} \frac{1}{k+1}=\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=2}^{n+1} \frac{1}{k}=1-\frac{1}{n+1}
$$

Therefore,

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1
$$

Definition 10.20. A geometric series is one in which each term is obtained by multiplying the preceding term by some fixed constant. If the initial term of the series is a and each term is obtained by multiplying the preceding term by r, then the series has the form

$$
a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}+\cdots
$$

The number r is called the ratio for the series.
Theorem 10.21. A geometric series

$$
\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}+\cdots \quad(a \neq 0)(a \neq 0)_{(a \neq 0)(a \neq 0)}
$$

converges if $|r|<1$ and diverges if $|r| \geq 1$. If the series converges, then the sum is

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}
$$

- When $r \neq 1$, the nth partial sum is given by $s_{n}=a \frac{1-r^{n+1}}{1-r}$. (This is easily derived from the fact that $s_{n}-r s_{n}=a-a r^{n+1}$.)
Example 10.22. Determine whether the following series is a geometric series. If so, determine whether the series converges.
(a) $2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
(b) $3-\frac{3}{2}+\frac{3}{3}-\frac{3}{4}+\frac{3}{5}-\frac{3}{6}+\ldots$
(c) $\sum_{k=1}^{\infty}(-1)^{k+1} 2^{k} 3^{2-k}=\sum_{k=1}^{\infty}(-1)(-1)^{k} 2^{k} \frac{9}{3^{k}}=(-9) \sum_{k=1}^{\infty}\left(-\frac{2}{3}\right)^{k}=\frac{-9\left(-\frac{2}{3}\right)}{1-\left(-\frac{2}{3}\right)}=\frac{18}{5}$

10.23. Algebraic Properties of Infinite Series:

(a) If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, then so are $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ and $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$. In which case,

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) \text { converges to } \sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

and

$$
\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right) \text { converges to } \sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n} .
$$

(b) If k is a nonzero constant, then the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} c a_{n}$ both converges or both diverge. In the case of convergence,

$$
\sum_{n=1}^{\infty} k a_{n} \text { converges to } k \sum_{n=1}^{\infty} a_{n} .
$$

(c) Convergence or divergence is unaffected by deleting a finite number of terms from a series; in particular, for any positive integer K, the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=K}^{\infty} a_{n}$ both converge or both diverge.

- From this fact, when stating general results about convergence or divergence of series, it is convenient to use the notation $\sum a_{k}$ as a generic template for a series, thus avoiding the issue of whether the sum begins with $k=0$ or $k=1$ or some other values.
- Although convergence is not affected when finitely many terms are deleted from the beginning of a convergent series, the sum of the series will usually changed by the removal of those term.

10.4 Convergence Tests

There are many convergence test. The skill of selecting a good test is developed through lots of practice. In some instances a test may be inconclusive, so another test must be tried.

Theorem 10.24. If the series $\sum a_{k}$ converge, then $\lim _{k \rightarrow \infty} a_{k}=0$.
Theorem 10.25. The Divergence Test:

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0 \text { or does not exist then } \sum_{n=1}^{\infty} a_{n} \text { diverges }
$$

- If $\lim _{n \rightarrow \infty} a_{n}=0$, then the test is inconclusive.

Example 10.26.

(a) The series $\sum\left(1-e^{-n}\right)$ diverges because $\lim _{n \rightarrow \infty}\left(1-e^{-n}\right)=1 \neq 0$.
(b) The series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ diverges because $\lim _{k \rightarrow \infty} \frac{k}{k+1}=1$.

Theorem 10.27. The (Improper) Integral Test: Let $\sum a_{k}$ be a series with positive terms. If f is a function that is decreasing and continuous on an interval $[a,+\infty]$ and such that $a_{k}=f(k)$ for all $k \geq a$, then

$$
\sum_{k=1}^{\infty} a_{k} \quad \text { and } \quad \int_{a}^{\infty} f(x) d x
$$

both converge or both diverge.

- Caution: DO NOT erroneously conclude that the sum of the series is the same as the value of the corresponding integral.

Definition 10.28. The harmonic series is the infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots
$$

Example 10.29. Use the integral test to determine whether the following series converge or diverge.
(a) $\sum_{k=1}^{\infty} \frac{1}{k}$
(b) $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$
(c) $\sum_{n=0}^{\infty} \frac{3}{n+2}$
10.30. Notice that the harmonic series diverges, even though $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$. The growth of its partial sum is slow, but they do in fact grow without bound.

Theorem 10.31. Convergence of p-Series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

converges if $p>1$ and diverges if $p \leq 1$.
Example 10.32. Show that

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2^{n}}+\frac{1}{n^{2}}\right)
$$

converges.

Theorem 10.33. Comparison Test: Suppose $0 \leq a_{n} \leq b_{n}$ for all n
(a) If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
(b) If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

- It is not essential that the condition $a_{n} \leq b_{n}$ hold for all k, as stated; the conclusions of the theorem remain true if this condition is eventually true.

Theorem 10.34. Limit Comparison Test: Suppose $a_{n}>0$ and $b_{n}>0$ for all n. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c, \text { where } 0<c<\infty
$$

then the two series $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.
Theorem 10.35. The Ratio Test: For a series $\sum a_{n}$, suppose the sequence of ratios $\left|a_{n+1}\right| /\left|a_{n}\right|$ has a limit:

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L
$$

- If $L<1$, then $\sum a_{n}$ converges.
- If $L>1$, or if L is infinite, then $\sum a_{n}$ diverges.
- If $L=1$, then this test is inconclusive.

Example 10.36. Show that the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges.

Theorem 10.37. The Root Test: For a series $\sum a_{n}$, suppose that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=L
$$

- If $L<1$, then $\sum a_{n}$ converges.
- If $L>1$, or if L is infinite, then $\sum a_{n}$ diverges.
- If $L=1$, then the test is inconclusive.

10.5 Alternating Series

Definition 10.38. A series is called an alternating series if the terms alternate in sign.
Theorem 10.39. Alternating Series Test: A series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}=-a_{1}+a_{2}-a_{3}+a_{4}+\cdots
$$

or

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots
$$

converge if

$$
0<a_{n+1} \leq a_{n} \text { for all } n \text { and } \lim _{n \rightarrow \infty} a_{n}=0
$$

- The partial sums oscillate back and forth, and since the distance between them tends to 0 , they eventually converge.
Example 10.40. Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges.

Definition 10.41. We say that the series $\sum a_{n}$ is

- absolutely convergent if $\sum\left|a_{n}\right|$ converges (which also means that $\sum a_{n}$ converges also).
- conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Theorem 10.42. The Ratio Test for Absolute Convergence: For a series $\sum a_{n}$ with nonzero terms, suppose the sequence of ratios $\left|a_{n+1}\right| /\left|a_{n}\right|$ has a limit:

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L
$$

- If $L<1$, then $\sum a_{n}$ converges absolutely and therefore converges.
- If $L>1$, or if L is infinite, then $\sum a_{n}$ diverges.
- If $L=1$, then this test is inconclusive.

10.6 Maclaurin and Taylor Series

It is not a big step to extend the notions of Maclaurin and Taylor polynomials to series by not stopping the summation index at n.

Definition 10.43. If f has derivatives of all orders at $x=c$, then we called the series

$$
f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots
$$

the Taylor series for f about $x=c$. In the special case where $c=0$, this series becomes

$$
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

in which case we call it the Maclaurin seires for f.

- The nth Maclaurin and Taylor polynomials are the nth partial sums for the corresponding Maclaurin and Taylor series.
- These series do not necessarily converge to $f(x)$ for all values of x.
10.44. It turns out that for $\cos x, \sin x$, and e^{x}, the Taylor series converge to the corresponding functions for all value of x, so we can write the following:

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\frac{x^{10}}{10!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots+\frac{x^{n}}{n!}+\ldots
\end{aligned}
$$

Example 10.45. By recognizing each series in problems below as a Taylor series evaluated at a particular value of x, find the sum of each of the following convergent series.
(a) $1+\frac{2}{1!}+\frac{4}{2!}+\frac{8}{3!}+\ldots+\frac{2^{n}}{n!}+$.
(b) $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!}+$.

10.7 Power Series and Interval of Convergence

Definition 10.46. If $c_{0}, c_{1}, c_{2}, \ldots$ are constants and x is a variable, then a series of the form

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k} x^{k}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k}+\cdots \tag{30}
\end{equation*}
$$

is called a power series in x.

- Every Maclaurin series is a power series in x.

Definition 10.47. If a numerical value is substituted for x in a power series, then the resulting series of numbers may either converge or diverge. The set of x-values for which a given power series in x converges is called the convergence set.
Theorem 10.48. The convergence set for a power series in x is always an interval centered at $x=0$.

- For this reason, the convergence set of a power series in x is called the interval of convergence.
- In the case where the convergence set extends between $-R$ and R, we say that the series has radius of convergence R.

Theorem 10.49. For any power series in x, exactly one of the following is true:
(a) The series converges only for $x=0$; the radius of convergence is defined to be $R=0$.
(b) The series converges absolutely (and hence converges) for all values of x; the radius of convergence is defined to be $R=\infty$.
(c) The series converges absolutely (and hence converges) for all x in some finite open interval $(-R, R)$ and diverge if $x<-R$ or $x>R$; the radius of convergence has the value R. At either of the endpoints $x=R$ or $x=-R$, the series may converge absolutely, converge conditionally, or diverge, depending on the particular series.

Diverges		
	Diverges	Radius of convergence $R=0$
Converges		
Diverges	0	
$-R$	Converges	Diverges

Figure 10.8.1

Example 10.50. Suppose that the power series $\sum c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=7$. Which of the following are true, false or not possible to determine?
(a) The power series converges when $x=10$.
(b) The power series converges when $x=3$.
(c) The power series converges when $x=6$.

Example 10.51. Find the radius of convergence of the following power series:
(a) $\sum_{k=0}^{\infty} x^{k}$
(b) $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Definition 10.52. If a is a constant, and if x in 30 is replaced by $x-a$, the the resulting series has the form

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots
$$

- Any Taylor series about $x=a$ is a power series in $x-a$.

Theorem 10.53. For any power series $\sum c_{k}(x-a)^{k}$, exactly one of the following is true:
(a) The series converges only for $x=a$; the radius of convergence is defined to be $R=0$.
(b) The series converges absolutely (and hence converges) for all values of x; the radius of convergence is defined to be $R=\infty$.
(c) The series converges absolutely (and hence converges) for all x in some finite open interval ($a-$ $R, a+R)$ and diverge if $x<a-R$ or $x>a+R$; the radius of convergence has the value R. At either of the endpoints $x=a+R$ or $x=a-R$, the series may converge absolutely, converge conditionally, or diverge, depending on the particular series.

Example 10.54. Suppose that the power series $\sum c_{n}(x-3)^{n}$ converges when $x=7$ and diverges when $x=9$. Which of the following are true, false or not possible to determine?
(a) The power series converges when $x=11$.
(b) The power series converges when $x=5$.
(c) The power series converges when $x=-3$.

Theorem 10.55. Method for Computing Radius of Convergence: To calculate the radius of convergence, R, for the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, use the ratio test with $a_{n}=(-1)^{n} c_{n}(x-a)^{n}$.

- If $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ is infinite then $R=0$
- If $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=0$ then $R=\infty$
- If $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=K|x-a|$ where K is finite non zero then $R=\frac{1}{K}$

Note that the ratio test does not tell us anything if $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ fails to exist, which can occur, for example, if some of the c_{n} are zero.

Definition 10.56. If a function f is expressed as a power series on some interval, then we say that the power series represents f on that interval.
10.57. Sometimes new functions actually originates as power series, and the properties of the functions are developed by working with their power series representations. For example, the functions

$$
J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k!)^{2}} \quad \text { and } \quad J_{1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2^{2 k+1}(k!)(k+1)!}
$$

which converge for all x, are called Bessel functions.

