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10.3 Partial Sums and Convergence of Series

Definition 10.16. An infinite series is an expression that can be written in the form

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · ·

• The numbers a1, a2, a3, . . . are called the terms of the series.

Let sn denote the sum of the first n terms of a series. Thus,

sn =
n∑
i=1

ai = a1 + a2 + a3 + ...+ an.

The number sn is called the nth partial sum of the series.

• The sequence {sn}+∞n=1 is called the sequence of partial sums.

•
∑∞
n=1 an = lim

n→∞
sn.

• In everyday language, the words “sequence” and “series” are often used interchangeably. However,
in mathematics there is a difference between the two terms–a sequence is a succession where as a
series is a sum.

Example 10.17. The most familiar examples of series occur in the decimal representations of real
numbers. For example, when we write 1

3 in the decimal form 1
3 = 0.3333 . . ., we mean

1
3

= 0.3 + 0.03 + 0.003 + 0.0003 + · · ·

which suggest that the decimal representations of 1
3 can be viewed as a sum of infinitely many real

numbers.

Definition 10.18. Let {sn} be the sequence of partial sums of the series
∑∞
k=1 ak. If the sequence {sn}

converges to a limit S, then the series is said to converge to S, and S is called the sum of the series.
We denote this by writing

S =
∞∑
k=1

ak.

If the sequence of partial sum diverges, then the series is said to diverge. A divergent series has no sum.
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Example 10.19. Telescoping Sum: Determine whether the series
∞∑
k=1

1
k(k+1) converges or diverges. If

it converges, find the sum.
Solution: We will first try to rewrite the partial sum in closed form:

n∑
k=1

1
k (k + 1)

=
n∑
k=1

(
1
k
− 1
k + 1

)
=

n∑
k=1

1
k
−

n∑
k=1

1
k + 1

=
n∑
k=1

1
k
−
n+1∑
k=2

1
k

= 1− 1
n+ 1

.

Therefore,
∞∑
k=1

1
k (k + 1)

= lim
n→∞

n∑
k=1

1
k (k + 1)

= lim
n→∞

(
1− 1

n+ 1

)
= 1.

Definition 10.20. A geometric series is one in which each term is obtained by multiplying the pre-
ceding term by some fixed constant. If the initial term of the series is a and each term is obtained by
multiplying the preceding term by r, then the series has the form

a+ ar + ar2 + ar3 + ...+ arn + · · ·

The number r is called the ratio for the series.

Theorem 10.21. A geometric series
∞∑
k=0

ark = a+ ar + ar2 + ar3 + ...+ arn + · · · (a 6= 0)(a 6= 0)(a 6= 0)(a 6= 0)

converges if |r| < 1 and diverges if |r| ≥ 1. If the series converges, then the sum is
∞∑
k=0

ark =
a

1− r
.

• When r 6= 1, the nth partial sum is given by sn = a 1−rn+1

1−r . (This is easily derived from the fact
that sn − rsn = a− arn+1.)

Example 10.22. Determine whether the following series is a geometric series. If so, determine whether
the series converges.

(a) 2 + 1 + 1
2 + 1

4 + 1
8 + ...

(b) 3− 3
2 + 3

3 −
3
4 + 3

5 −
3
6 + ...
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(c)
∞∑
k=1

(−1)k+12k32−k =
∞∑
k=1

(−1) (−1)k2k 9
3k = (−9)

∞∑
k=1

(
− 2

3

)k =
−9(− 2

3 )
1−(− 2

3 ) = 18
5

10.23. Algebraic Properties of Infinite Series:

(a) If
∑∞
n=1 an and

∑∞
n=1 bn are convergent series, then so are

∑∞
n=1(an + bn) and

∑∞
n=1(an + bn). In

which case,
∞∑
n=1

(an + bn) converges to
∞∑
n=1

an +
∞∑
n=1

bn

and
∞∑
n=1

(an − bn) converges to
∞∑
n=1

an −
∞∑
n=1

bn.

(b) If k is a nonzero constant, then the series
∑∞
n=1 an and

∑∞
n=1 can both converges or both diverge.

In the case of convergence,
∞∑
n=1

kan converges to k
∞∑
n=1

an.

(c) Convergence or divergence is unaffected by deleting a finite number of terms from a series; in
particular, for any positive integer K, the series

∑∞
n=1 an and

∑∞
n=K an both converge or both

diverge.

• From this fact, when stating general results about convergence or divergence of series, it is
convenient to use the notation

∑
ak as a generic template for a series, thus avoiding the issue

of whether the sum begins with k = 0 or k = 1 or some other values.

• Although convergence is not affected when finitely many terms are deleted from the beginning
of a convergent series, the sum of the series will usually changed by the removal of those term.

10.4 Convergence Tests

There are many convergence test. The skill of selecting a good test is developed through lots of practice.
In some instances a test may be inconclusive, so another test must be tried.

Theorem 10.24. If the series
∑
ak converge, then lim

k→∞
ak = 0.

Theorem 10.25. The Divergence Test:

lim
n→∞

an 6= 0 or does not exist then
∞∑
n=1

an diverges

• If lim
n→∞

an = 0, then the test is inconclusive.

Example 10.26.

(a) The series
∑

(1− e−n) diverges because lim
n→∞

(1− e−n) = 1 6= 0.

(b) The series
∞∑
k=1

k
k+1 diverges because lim

k→∞
k
k+1 = 1.

Theorem 10.27. The (Improper) Integral Test: Let
∑
ak be a series with positive terms. If f is a

function that is decreasing and continuous on an interval [a,+∞] and such that ak = f(k) for all k ≥ a,
then

∞∑
k=1

ak and
∫ ∞
a

f(x)dx

both converge or both diverge.
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• Caution: DO NOT erroneously conclude that the sum of the series is the same as the value of the
corresponding integral.

Definition 10.28. The harmonic series is the infinite series
∞∑
n=1

1
n

=
1
1

+
1
2

+
1
3

+ · · ·+ 1
n

+ · · ·

Example 10.29. Use the integral test to determine whether the following series converge or diverge.

(a)
∑∞
k=1

1
k

(b)
∑∞
k=1

1
k2

(c)
∑∞
n=0

3
n+2

10.30. Notice that the harmonic series diverges, even though lim
n→∞

an = lim
n→∞

1
n = 0. The growth of its

partial sum is slow, but they do in fact grow without bound.

Theorem 10.31. Convergence of p-Series:

∞∑
n=1

1
np

converges if p > 1 and diverges if p ≤ 1.

Example 10.32. Show that
∞∑
n=1

( 1
2n

+
1
n2

)
converges.

123



Theorem 10.33. Comparison Test: Suppose 0 ≤ an ≤ bn for all n

(a) If
∑
bn converges, then

∑
an converges.

(b) If
∑
an diverges, then

∑
bn diverges.

• It is not essential that the condition an ≤ bn hold for all k, as stated; the conclusions of the theorem
remain true if this condition is eventually true.

Theorem 10.34. Limit Comparison Test: Suppose an > 0 and bn > 0 for all n. If

lim
n→∞

an
bn

= c, where 0 < c <∞

then the two series
∑
an and

∑
bn either both converge or both diverge.

Theorem 10.35. The Ratio Test: For a series
∑
an, suppose the sequence of ratios |an+1|/|an| has a

limit:

lim
n→∞

|an+1|
|an|

= L

• If L < 1, then
∑
an converges.

• If L > 1, or if L is infinite, then
∑
an diverges.

• If L = 1, then this test is inconclusive.

Example 10.36. Show that the series
∑∞
n=1

2n

n! converges.

Theorem 10.37. The Root Test: For a series
∑
an, suppose that

lim
n→∞

n
√
an = lim

n→∞
(an)1/n = L

• If L < 1, then
∑
an converges.

• If L > 1, or if L is infinite, then
∑
an diverges.

• If L = 1, then the test is inconclusive.

10.5 Alternating Series

Definition 10.38. A series is called an alternating series if the terms alternate in sign.

Theorem 10.39. Alternating Series Test: A series of the form

∞∑
n=1

(−1)nan = −a1 + a2 − a3 + a4 + · · ·

or
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + · · ·

converge if
0 < an+1 ≤ an for all n and lim

n→∞
an = 0
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• The partial sums oscillate back and forth, and since the distance between them tends to 0, they
eventually converge.

Example 10.40. Show that the alternating harmonic series
∑∞
n=1

(−1)n−1

n converges.

Definition 10.41. We say that the series
∑
an is

• absolutely convergent if
∑
|an| converges (which also means that

∑
an converges also).

• conditionally convergent if
∑
an converges but

∑
|an| diverges.

Theorem 10.42. The Ratio Test for Absolute Convergence: For a series
∑
an with nonzero

terms, suppose the sequence of ratios |an+1|/|an| has a limit:

lim
n→∞

|an+1|
|an|

= L

• If L < 1, then
∑
an converges absolutely and therefore converges.

• If L > 1, or if L is infinite, then
∑
an diverges.

• If L = 1, then this test is inconclusive.

10.6 Maclaurin and Taylor Series

It is not a big step to extend the notions of Maclaurin and Taylor polynomials to series by not stopping
the summation index at n.

Definition 10.43. If f has derivatives of all orders at x = c, then we called the series

f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n + · · ·

the Taylor series for f about x = c. In the special case where c = 0, this series becomes

f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 + ...+
f (n)(0)
n!

xn + · · ·

in which case we call it the Maclaurin seires for f .

• The nth Maclaurin and Taylor polynomials are the nth partial sums for the corresponding Maclau-
rin and Taylor series.

• These series do not necessarily converge to f(x) for all values of x.

10.44. It turns out that for cosx, sinx , and ex, the Taylor series converge to the corresponding functions
for all value of x, so we can write the following:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ ...+

(−1)nx2n+1

(2n+ 1)!
+ ...

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ ...+

(−1)nx2n

(2n)!
+ ...

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ ...+

xn

n!
+ ...
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Example 10.45. By recognizing each series in problems below as a Taylor series evaluated at a particular
value of x , find the sum of each of the following convergent series.

(a) 1 + 2
1! + 4

2! + 8
3! + ...+ 2n

n! + ·

(b) 1− 1
3! + 1

5! −
1
7! + ...+ (−1)n

(2n+1)! + ·

10.7 Power Series and Interval of Convergence

Definition 10.46. If c0, c1, c2, . . . are constants and x is a variable, then a series of the form
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ ckx
k + · · · (30)

is called a power series in x.

• Every Maclaurin series is a power series in x.

Definition 10.47. If a numerical value is substituted for x in a power series, then the resulting series of
numbers may either converge or diverge. The set of x-values for which a given power series in x converges
is called the convergence set.

Theorem 10.48. The convergence set for a power series in x is always an interval centered at x = 0.

• For this reason, the convergence set of a power series in x is called the interval of convergence.

• In the case where the convergence set extends between −R and R, we say that the series has radius
of convergence R.

Theorem 10.49. For any power series in x, exactly one of the following is true:

(a) The series converges only for x = 0; the radius of convergence is defined to be R = 0.

(b) The series converges absolutely (and hence converges) for all values of x; the radius of convergence
is defined to be R =∞.

(c) The series converges absolutely (and hence converges) for all x in some finite open interval (−R,R)
and diverge if x < −R or x > R; the radius of convergence has the value R. At either of the
endpoints x = R or x = −R, the series may converge absolutely, converge conditionally, or diverge,
depending on the particular series.
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Example 10.50. Suppose that the power series
∑
cnx

n converges when x = −4 and diverges when
x = 7. Which of the following are true, false or not possible to determine?

(a) The power series converges when x = 10.

(b) The power series converges when x = 3.

(c) The power series converges when x = 6.

Example 10.51. Find the radius of convergence of the following power series:

(a)
∑∞
k=0 x

k

(b)
∑∞
k=0

xk

k!

Definition 10.52. If a is a constant, and if x in (30) is replaced by x − a, the the resulting series has
the form

∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · ·

• Any Taylor series about x = a is a power series in x− a.

Theorem 10.53. For any power series
∑
ck(x− a)k, exactly one of the following is true:

(a) The series converges only for x = a; the radius of convergence is defined to be R = 0.

(b) The series converges absolutely (and hence converges) for all values of x; the radius of convergence
is defined to be R =∞.
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(c) The series converges absolutely (and hence converges) for all x in some finite open interval (a −
R, a + R) and diverge if x < a − R or x > a + R; the radius of convergence has the value R.
At either of the endpoints x = a + R or x = a − R, the series may converge absolutely, converge
conditionally, or diverge, depending on the particular series.

Example 10.54. Suppose that the power series
∑
cn(x− 3)n converges when x = 7 and diverges when

x = 9. Which of the following are true, false or not possible to determine?

(a) The power series converges when x = 11.

(b) The power series converges when x = 5.

(c) The power series converges when x = −3.

Theorem 10.55. Method for Computing Radius of Convergence: To calculate the radius of
convergence, R, for the power series

∑∞
n=0 cn(x− a)n, use the ratio test with an = (−1)ncn(x− a)n.

• If lim
n→∞

|an+1|
|an|

is infinite then R = 0

• If lim
n→∞

|an+1|
|an|

= 0 then R =∞

• If lim
n→∞

|an+1|
|an|

= K|x− a| where K is finite non zero then R =
1
K

Note that the ratio test does not tell us anything if lim
n→∞

|an+1|
|an| fails to exist, which can occur, for

example, if some of the cn are zero.

Definition 10.56. If a function f is expressed as a power series on some interval, then we say that the
power series represents f on that interval.

10.57. Sometimes new functions actually originates as power series, and the properties of the functions
are developed by working with their power series representations. For example, the functions

J0(x) =
∞∑
k=0

(−1)kx2k

22k(k!)2
and J1(x) =

∞∑
k=0

(−1)kx2k+1

22k+1(k!)(k + 1)!
,

which converge for all x, are called Bessel functions.
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