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9 Taylor Polynomials

Sometimes we can approximate complicated functions with simpler ones that give the accuracy we want
for specific applications and are easier to work with.

9.1 Local Linear Approximations

9.1. Derivatives can be used to approximate nonlinear functions by linear functions. If a function
f is differentiable at x0, then a sufficiently magnified portion of the graph of f centered at the point
P (x0, f(x0)) takes on the appearance of a straight line segment. Figure 3.9.1 illustrates this at several
points on the graph of y = x2 + 1.

For this reason, a function that is differentiable at x = c is sometimes said to be locally linear at c:
locally, every differentiable curve behaves like a straight line.

9.2. As you can see in Figure 3.9.2, the tangent to the curve lies close to the curve near the point of
tangency. For a brief interval to either side, the y-values along the tangent line give good approximations
to the y-values on the curve.
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Definition 9.3. Linearization: If f is differentiable at x = c then the approximating function

L(x) = f(c) + f ′(c)(x− c)

is the linearization of f at c. The approximation

f(x) ≈ L(x)

of f by L is the standard linear approximation of f at c. The point x = c is the center of the
approximation.

• The approximation formula can also be expressed in terms of the increment ∆x = x− c as

f(c+ ∆x) ≈ f(c) + f ′(c)∆x.

• A linear approximation normally loses accuracy away from its center. If the graph of f has a
pronounced “bend” at c, then we can expect that the accuracy of the local linear approximation
of f at c will decrease rapidly as we progress away from c.

• The local linear approximation of f at x0 has the property that its value and the value of its first
derivative match those of f at c.

Example 9.4. Find the local linear approximation of f(x) =
√
x at x = 4. Use that to approximate√

4.1.
Solution:

9.2 Taylor Polynomials: Approximation by Higher-Degree Polynomials

We may try to improve on the accuracy of a local linear approximation by using higher-degree polynomials.
Given a function f that can be differentiated n times at x = c, we will use a polynomial p of degree n
with the property that the value of p and the values of its first n derivatives match those of f at c

Definition 9.5. If f can be differentiated n times at x = c, then we define the The nth Taylor
Polynomial for f about x = c to be

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 +

f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n,

where we use the notation f (k)(c) to denote the kth derivative of f at x = c.
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• When c = 0, the Taylor polynomial pn(x) becomes the nth Maclaurin polynomial:

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)
3!

x3 + ...+
f (n)(0)
n!

xn

• The sigma notation for Taylor polynomial:

pn(x) =
n∑
k=0

f (k)(c)
k!

(x− c)k,

where we make the convention that f (0)(c) denote f(c).

• Local linear approximation: f(x) ≈ p1(x).

• Local quadratic approximation: f(x) ≈ p2(x).

Example 9.6. Find the Maclaurin polynomials p0, p1, p2, p3, and pn for ex.
Solution:

Example 9.7. Find the nth Maclaurin polynomial for f(x) = sin(x).
Solution:

Example 9.8. Find the nth Taylor polynomial for f(x) = 1/x about x = 1.
Solution:

Example 9.9. Construct the Taylor polynomial of degree 4 approximating the function lnx for x near
1.
Solution:
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Example 9.10. The function f(x) is approximated near x = 0 by the second degree Taylor polynomial

P2(x) = 5− 7x+ 9x2

Give the value of

(a) f(0)

(b) f ′(0)

(c) f ′′(0)

10 Infinite Sequences and Series

10.1 Sequences

Definition 10.1. An infinite sequence of numbers, or more simply a sequence, is a function whose
domain is the set of positive integers.

• Stated informally, a sequence is a list of numbers

a1, a2, a3, . . . , an, . . .

in a given order.

• The dots are used to indicate that the sequence continues indefinitely.

• Each of a1, a2, a3 and so on represents a number. These are the terms of the sequence.

• Sometimes the expression {an}∞n=1 is used to describe the sequence.

◦ The letter n is called the index for the sequence.

◦ It is not essential to use n for the index. We might view the general term of the sequence
a1, a2, a3, . . . to be the kth term, in which case we would denote this sequence as {ak}+∞k=1.

◦ It is not essential to start the index at 1.

◦ When the starting value for the index of a sequence is not relevant to the discussion, it is
common to use a notation such as {an} in which there is no reference to the starting value
of n.

• Some sequences have no simple formula. For example, the sequence 3, 3.1, 3.14, 3.141, 3.1415, . . .
gives the first n digits of π.

10.2. There are two ways to represent sequences graphically.

116



(a) Mark the first few points on the real axis.

(b) Plot the function defining the sequence on integer inputs. The graph then consists of some points
in the xy-plane, located at (1, a1, (2, a2), . . ., (n, an), . . ..

Example 10.3. Represent the sequence an = 1
n graphically.

Solution:

10.2 Limit of a Sequence

Definition 10.4. Stated informally, we say that a sequence {an} approaches a limit L if the terms in the
sequence eventually become arbitrarily close to L. More formally, a sequence {an} is said to converge
to the limit L if given any ε > 0, there is a positive integer N such that |an − L| < ε for n ≥ N (Figure
10.1.3). In this case we write

lim
n→+∞

an = L,

or simply an → L. A sequence that does not converge to some finite limit is said to diverge.

Example 10.5. Show that the sequence {1,−1, 1,−1, . . . , (−1)n+1, . . .} diverges.
Solution: Suppose the sequence converges to some number L. By choosing ε = 1/2 in the definition of
the limit, we must find an integer N such that all terms an of the sequence with index n larger than N
must lie within of L. Since the number 1 appears repeatedly as every other term of the sequence, we must
have that the number 1 lies within the distance ε = 1/2 of L. It follows that L must satisfy |L− 1| < 1/2
or equivalently, 1/2 < L < 3/2. Likewise, the number −1 appears repeatedly in the sequence with
arbitrarily high index. So we must also have that |L − (−1)| < 1/2, or equivalently −3/2 < L < −1/2.
But the number L cannot lie in both of the intervals (1/2, 3/2) and (−3/2,−1/2) because they have no
overlap. Therefore, no such limit L exists and so the sequence diverges.

10.6. By definition, if lim
n→∞

an = 0, then lim
n→∞

|an| = 0.

Proof. The same n which works for |an − 0| < ε would also work for ||an| − 0| < ε.

10.7. To calculate the limit of a sequence, we can use what we know about the limits of functions.

• If we know that lim
x→∞

f(x) = L, then the limit of the sequence defined by an = f(n) is also L.
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◦ Because lim
x→∞

1
x = 0, we have lim

n→∞
1
n = 0.

◦ Because lim
x→+∞

x
x+1 = 1, we have lim

n→+∞
n
n+1 = 1

• When lim
x→∞

f(x) does not exist, the sequence may converge or diverge.

◦ We know that lim
x→∞

cos(2πx) DNE. However, the sequence an = cos(2πn) ≡ 1 converges to
the value 1.

◦ We know that lim
x→∞

cos(πx) DNE. However, the sequence an = cos(πn) = (−1)n diverges
because it oscillates between −1 and 1.

Theorem 10.8. Squeezing Theorem for Sequences: Let {an}, {bn}, {cn} be sequences such that

an ≤ bn ≤ cn for all values of n beyond some index N.

If the sequence {an} and {cn} have a common limit L as n → ∞, then {bn} also has the limit L as
n→∞.

• This theorem is useful for finding limits of sequences that cannot be obtained directly.

Example 10.9. Find the limit of the sequence
{
n!
nn

}+∞
n=1

.
Solution: Rewrite the general term as

an =
1
n

(
2 · 3 · · ·n
n · n · · ·n

)
.

Observe that
0 ≤ an ≤

1
n
.

Example 10.10. Find the limit of the sequence
{

sinn
n

}∞
n=1

.
Solution:

Theorem 10.11. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. −|an| ≤ an ≤ |an|.

• Combining this result with 10.6, we then know that lim
n→∞

|an| = 0 if and only if lim
n→∞

an = 0.
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Definition 10.12. Diverges to Infinity: The sequence {an} diverges to infinity if for every number
M there is an integer N such that for all n larger than N , an > M . If this condition holds we write

lim
n→∞

an =∞ or an →∞.

Similarly if for every number m there is an integer N such that for all n > N we have an < m then we
say {an} diverges to negative infinity and write

lim
n→∞

an = −∞ or an → −∞.

• A sequence may diverge without diverging to infinity or negative infinity.

Theorem 10.13. The Continuous Function Theorem for Sequences: Let {an} be a sequence
of real numbers. If an → L and if f is a function that is continuous at L and defined at all an, then
f(an)→ f(L).

Definition 10.14. If discarding finitely many terms from the beginning of a sequence produces a sequence
with a certain property, the the original sequence is said to have that property eventually.

119


