
 

 

Sirindhorn International Institute of Technology 

Thammasat University 
Department of Common and Graduate Studies 

 

MAS 116: Lecture Notes 3

Semester: 3/2008
Instructors: Dr. Prapun Suksompong

3.18. Some History [2]:

• The tangent problem (the problem of trying to find an equation of the tangent line) has
given rise to the branch of calculus called differential calculus, which was not invented
until more than 2000 years after integral calculus.

• For the branch of calculus called integral calculus, the central problem is the area problem
whose origins go back to the ancient Greeks.

3.3 Derivatives of Simple Functions

3.19. Derivative of a Constant: The derivative of a constant function is 0; that is, if c is
any real number, then

d

dx
c = 0

Example 3.20. Find the derivative of the following functions

(a) f(x) = 13
Solution:

(b) f(x) =
√

2
Solution:

(c) f(x) = e+ π
Solution:
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3.21. The Power Rule: If n is any real number (n may or may not be an integer),

d

dx
(xn) = nxn−1.

Example 3.22. Find the derivative of the following functions

(a) f(x) = x3

Solution:

(b) f(x) = 1
x2

Solution:

(c) f(x) =
√
x

Solution:

3.23. Derivative of ex: The derivative of ex is again ex; that is,

d

dx
(ex) = ex.

3.24. Derivative of lnx: If x > 0, then

d

dx
(lnx) =

1
x
.

3.4 Techniques of Differentiation

3.25. Constant Multiple Rule: If f is differentiable at x and c is any real number, then cf
is also differentiable at x and

d

dx
(cf(x)) = c

d

dx
f(x) = cf ′(x).

In words, a constant factor can be moved through a derivative sign.

3.26. Sum and Difference Rules: If f and g are differentiable at x, then so are f + g and
f − g and

d

dx
[f(x)± g(x)] =

d

dx
[f(x)]± d

dx
[g(x)] = f ′(x)± g′(x).

In words, the derivative of a sum equals the sum of the derivatives, and the derivative of a
difference equals the difference of the derivatives.
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• Although the above sum and difference rules are stated for sums and differences of two
functions, they can be extended to any finite number of functions.

Example 3.27. Find the derivative of the following functions

(a) f(x) = πx+ 2 lnx− 3 ln(5x)
Solution:

(b) f(x) = x+3√
x

Solution:

(c) f(x) = 3
√
x− 1

3√x
Solution:

(d) f(x) = (x+1)2

x
Solution:

3.28. Linearity of differentiation follows from the sum rule and the constant multiple rule.
Let f and g be functions, with α and β fixed. Then,

d

dx
(α · f(x) + β · g(x)) = α

d

dx
f(x) + β

d

dx
g(x),

or
(α · f + β · g)′ = α · f ′ + β · g′.

3.29. Product Rule: If f and g are differentiable at x, then so is the product f · g, and

d

dx
(f(x) · g(x)) = g(x) · d

dx
f(x) + f(x) · d

dx
g(x) = g(x)f ′(x) + f(x)g′(x)

• If we let u = f(x) and v = g(x), we have

(uv)′ = u′v + v′u

• In general, the derivative of a product of two functions is NOT the product of their
derivatives.
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Example 3.30. Find the derivative of the following functions

(a) h(x) = ex lnx
Solution:

(b) h(x) = (2x− 3 lnx)(x+ 1√
x

)
Solution:

3.31. Quotient Rule: If f and g are differentiable at x and if g(x) 6= 0, then f/g is differen-
tiable at x and

d

dx

(f(x)
g(x)

)
=
g(x) · ddxf(x)− f(x) · ddxg(x)

(g(x))2
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2

• If we let u = f(x) and v = g(x), we have(u
v

)′
=
u′v − v′u

v2

Example 3.32. Find the derivative of the following functions

(a) h(x) = ex

x2+1
Solution:

(b) h(x) =
4√x

x2−2x+1
Solution:

3.5 The Chain Rule

We want to find a formula for the derivative of (f ◦ g)(x) = f [g(x)] in terms of the derivatives
of f(x) and g(x).
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Theorem 3.33. If g is differentiable at x and f is differentiable at g(x), then the composition
f ◦ g is differentiable at x. Moreover, if

y = f(g(x)) and u = g(x)

then y = f(u) and
dy

dx
=
dy

du
· du
dx

or
d

dx
f [g(x)] = f ′[g(x)] · g′(x)

• A convenient way to remember this formula is to call f the “outside function” and g the
“inside function” in the composition f(g(x)). In which case, the derivative of f(g(x)) is
the derivative of the outside function evaluated at the inside function times the derivative
of the inside function.

3.34. Generalized Derivative Formula: If we write u = g(x), then we can rewrite the chain rule
as

d

dx
[f(u)] = f ′(u)

du

dx
.

Example 3.35. Find the derivative of the following functions

(a) f(x) = (x2 + 3)78.
Solution:

(b) f(x) = 1
(x3+x−5)4 .

Solution:

(c) f(x) =
√√

x+ 1.
Solution:
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(d) f(x) =
√
x(4x+ 3)3.

Solution:

(e) f(x) = ex
3+4x2+x−5.

Solution:

(f) f(x) = ln |x|.
Solution:

(g) f(x) = ln
∣∣∣x+1
x+2

∣∣∣.
Solution:

Example 3.36. Given that f ′(x) =
√

3x+ 4 and g(x) = x2 − 1, find F ′(x) if F (x) = f(g(x)).
Solution:

Example 3.37. Find f ′(x2 − 1) if
d

dx
[f(x2 − 1)] = x3
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Solution:

3.6 Higher Derivatives

3.38. The derivative f ′ of a function f is itself a function and hence may have a derivative
of its own. If f ′ is differentiable, then its derivative is denoted by f ′′ and is call the second
derivative of f .

As long as we have differentiability, we can continue the process of differentiating to obtain
third, fourth, fifth, and even higher derivatives of f . These successive derivatives are denoted
by

f ′, f ′′ = (f ′)′, f ′′′ = (f ′′)′, . . .

• If y = f(x), then successive derivatives can also be denoted by

y′, y′′, y′′′, . . .

• Another common notation is

d

dx
[f(x)],

d2

dx2
[f(x)],

d3

dx3
[f(x)], . . .

• These are called, in succession, the first derivative, the second derivative, the third deriva-
tive, and so forth.

Definition 3.39. The number of times that f is differentiated is called the order of the deriva-
tive.

Definition 3.40. A general nth order derivative can be denoted by

dny

dxn
= f (n)(x) =

dn

dxn
[f(x)]

and the value of a general nth order derivative at a specific point x = x0 can be denoted by

dny

dxn

∣∣∣∣
x=x0

= f (n)(x0) =
dn

dxn
[f(x)]

∣∣∣∣
x=x0

.

Example 3.41. Find the first and second derivative of the following

(a) f(x) = 2x3 + 2x2 − 1
Solution:

49



(b) f(x) = ex + 2 lnx
Solution:

(c) f(x) = x+1
x

Solution:
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3.7 Trigonometry Review

3.42. The trigonometric functions are functions of an angle. In modern usage, there are
six basic trigonometric functions. For a positive acute angle , they can be defined as ratios of
the sides of a right triangle.
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central angle of θ radians, then by comparison with the arc length subtended by that angle
on a circle of radius 1 we obtain s

θ
= r

1

from which we obtain the following relationships between the central angle θ , the radius r ,
and the subtended arc length s when θ is in radians (Figure A.5):

θ = s/r and s = rθ (3–4)
r

s

u

If u is in radians,
then u = s/r.

Figure A.5

The shaded region in Figure A.5 is called a sector. It is a theorem from plane geometry
that the ratio of the area A of this sector to the area of the entire circle is the same as the
ratio of the central angle of the sector to the central angle of the entire circle; thus, if the
angles are in radians, we have

A

πr2
= θ

2π

Solving for A yields the following formula for the area of a sector in terms of the radius r

and the angle θ in radians:
A = 1

2 r2θ (5)

TRIGONOMETRIC FUNCTIONS FOR RIGHT TRIANGLES
The sine, cosine, tangent, cosecant, secant, and cotangent of a positive acute angle θ can
be defined as ratios of the sides of a right triangle. Using the notation from Figure A.6,
these definitions take the following form:

u

x

yr

Figure A.6

sin θ = side opposite θ

hypotenuse
= y

r
, csc θ = hypotenuse

side opposite θ
= r

y

cos θ = side adjacent to θ

hypotenuse
= x

r
, sec θ = hypotenuse

side adjacent to θ
= r

x

tan θ = side opposite θ

side adjacent to θ
= y

x
, cot θ = side adjacent to θ

side opposite θ
= x

y

(6)

We will call sin, cos, tan, csc, sec, and cot the trigonometric functions. Because similar
triangles have proportional sides, the values of the trigonometric functions depend only on
the size of θ and not on the particular right triangle used to compute the ratios. Moreover,
in these definitions it does not matter whether θ is measured in degrees or radians.

Example 2 Recall from geometry that the two legs of a 45◦– 45◦–90◦ triangle are
of equal size and that the hypotenuse of a 30◦– 60◦–90◦ triangle is twice the shorter leg,
where the shorter leg is opposite the 30◦ angle. These facts and the Theorem of Pythagoras
yield Figure A.7. From that figure we obtain the results in Table 2.

Figure A.7

45°
1

1

45°
√2

30°

1

60°
2

√3

3.43. All six trigonometric functions are listed below along with equations relating them to
one another.

(a) Sine: sin θ = cos
(
π
2 − θ

)
.

(b) Cosine: cos θ = sin
(
π
2 − θ

)
.

(c) Tangent: tan θ = 1
cot θ = sin θ

cos θ = cot
(
π
2 − θ

)
.

(d) Cotangent: cot θ = 1
tan θ = cos θ

sin θ = tan
(
π
2 − θ

)
.

(e) Secant: sec θ = 1
cos θ = csc

(
π
2 − θ

)
.

(f) Cosecant: csc θ = 1
sin θ = sec

(
π
2 − θ

)
.

Example 3.44. All of the trigonometric functions of a positive acute angle θ can be constructed geo-
metrically in terms of a unit circle.

3.45. It is only in special cases (some of which are provided in Table 3 below) that exact values
for trigonometric functions can be obtained; usually a calculating utility or a computer program
will be required.

51



November 4, 2004 15:00 k34-appa Sheet number 6 Page number 6 cyan magenta yellow black

A6 Appendix A: Trigonometry Review

and from Formulas (7) through (10),

tan(−π/2) = sin(−π/2)

cos(−π/2)
= −1

0
(undefined)

cot(−π/2) = cos(−π/2)

sin(−π/2)
= 0

−1
= 0

sec(−π/2) = 1

cos(−π/2)
= 1

0
(undefined)

csc(−π/2) = 1

sin(−π/2)
= 1

−1
= −1

The reader should be able to obtain all of the results in Table 3 by the methods illustrated
in the last three examples. The dashes indicate quantities that are undefined.

Table 3

0

1

0

—

1

—

sin u

cos u

tan u

csc u

sec u

cot u

u = 0
(0°)

0

1

0

—

1

—

2p

(360°)

0

–1

0

—

–1

—

p

(180°)

1/2

√3/2

1/√3

2

2/√3

√3

p/6
(30°)

1/2

–√3/2

–1/√3

2

–2/√3

–√3

5p/6
(150°)

1/√2

1/√2

1

√2

√2

1

p/4
(45°)

√3/2

1/2

√3

2/√3

2

1/√3

p/3
(60°)

1

0

—

1

—

0

p/2
(90°)

–1

0

—

–1

—

0

3p/2
(270°)

√3/2

–1/2

–√3

2/√3

–2

–1/√3

2p/3
(120°)

1/√2

–1/√2

–1

√2

–√2

–1

3p/4
(135°)

It is only in special cases that exact values for trigonometric functions can be obtained; usually, a
calculating utility or a computer program will be required.

The signs of the trigonometric functions of an angle are determined by the quadrant in
which the terminal side of the angle falls. For example, if the terminal side falls in the first
quadrant, then x and y are positive in Definition A.1, so all of the trigonometric functions
have positive values. If the terminal side falls in the second quadrant, then x is negative
and y is positive, so sin and csc are positive, but all other trigonometric functions are neg-
ative. The diagram in Figure A.13 shows which trigonometric functions are positive in the
various quadrants. The reader will find it instructive to check that the results in Table 3 are
consistent with Figure A.13.

x

y

sin
csc
+

All  +

tan
cot
+

cos
sec
+

Figure A.13
TRIGONOMETRIC IDENTITIES
A trigonometric identity is an equation involving trigonometric functions that is true for all
angles for which both sides of the equation are defined. One of the most important identities
in trigonometry can be derived by applying the Theorem of Pythagoras to the triangle in
Figure A.9 to obtain

x2 + y2 = r2

Dividing both sides by r2 and using the definitions of sin θ and cos θ (Definition A.1), we
obtain the following fundamental result:

sin2 θ + cos2 θ = 1 (11)

3.46. Difference identity:

sinα− sinβ = 2 sin
(
α− β

2

)
cos
(
α+ β

2

)
(7)

cosα− cosβ = −2 sin
(
α− β

2

)
sin
(
α+ β

2

)
(8)

Example 3.47. Use Example 3.44 to show that

sinx ≤ x ≤ tanx. (9)

for 0 < x < π
2 .

Using the fact that sinx > 0 for 0 < x < π
2 , we obtain

cosx ≤ sinx
x
≤ 1. (10)

The inequality (10) also holds for −π2 < x < 0. To see this, replace x ny −x and use the identities
sin(−x) = − sin(x), and cos(−x) = cosx.

Example 3.48. Use (10) and the squeezing theorem to show that lim
x→0

sin x
x = 1.

Solution:
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Example 3.49. Use Example 3.48 to show that

lim
x→0

1− cosx
x

= 0.

Solution:

lim
x→0

1− cosx
x

= lim
x→0

1− cosx
x

1 + cosx
1 + cosx

= lim
x→0

1− cos2x
x

1
1 + cosx

= lim
x→0

sin2x

x

1
1 + cosx

= lim
x→0

sinx
x

sinx
1 + cosx

=
(

lim
x→0

sinx
x

)(
lim
x→0

sinx
1 + cosx

)
= (1)

(
0

1 + 1

)
= 0

Example 3.50. Use Example 3.48 to show that

lim
x→0

tanx
x

= 1

Solution:

lim
x→0

tanx
x

=
(

lim
x→0

sinx
x

)(
lim
x→0

1
cosx

)
= (1) (1) = 0.

Example 3.51. Some more interesting limits:

(a) lim
x→0

sin βx
x = β.

(b) lim
x→0

sin β1x
sin β2x

= β1
β2

.

3.8 Derivatives of Trigonometric Functions

We will assume that the variable x in the trigonometric functions sinx, cosx, tanx, cotx, secx,
and cscx is measured in radians.

Example 3.52. Show that d
dx sinx = cosx.

Solution: Recall the difference identity (7)

sinα− sinβ = 2 sin
(
α− β

2

)
cos
(
α+ β

2

)
.

Hence,
sin (x+ h)− sinx

h
= 2

sin
(
h
2

)
h

cos
(
x+

h

2

)
=

sin
(
h
2

)
h
2

cos
(
x+

h

2

)
Therefore,

d

dx
sinx = lim

h→0

sin (x+ h)− sinx
h

=

(
lim
h→0

sin
(
h
2

)
h
2

)(
lim
h→0

cos
(
x+

h

2

))
= (1) (cosx) = cosx.

Example 3.53. d
dx cscx = d

dx
1

sin x = − 1
sin2x

cosx = − cscx cotx

Example 3.54. d
dx cosx = d

dx sin
(
π
2 − x

)
= − cos

(
π
2 − x

)
= − sinx
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Example 3.55. Show that d
dx tanx = sec2x.

d

dx
tanx =

d

dx

sinx
cosx

=
cosx d

dx sinx−
(
d
dx cosx

)
sinx

cos2x

=
cosx cosx− (− sinx) sinx

cos2x
=

1
cos2x

= sec2x

Example 3.56. Consider two function f(x) and g(x) with the following relation:

g(x) = f
(π

2
− x
)
. (11)

Then, by chain rule,
g′ (x) = −f ′

(π
2
− x
)
.

If the formula for f ′(x) consists only of terms involving trigonometric functions of x, then f ′
(
π
2 − x

)
is simply f ′(x) with all of its trigonometric function replaced by their “cofunction”. In fact, we have
already follow this procedure in Example 3.54. Therefore, by Example 3.53 and 3.55, we have

d

dx
cotx = −csc2x

and

d

dx
secx = + secx tanx.

3.57. The examples above find the derivative of the trigonometric functions which we summarize
here:

d

dx
[sin(x)] = cos(x)

d

dx
[cos(x)] = − sin(x)

d

dx
[tan(x)] = sec2(x)

d

dx
[sec(x)] = sec(x) tan(x)

d

dx
[cot(x)] = − csc2(x)

d

dx
[csc(x)] = − csc(x) cot(x)

Example 3.58. Find the derivative of the following functions

(a) f(x) = 5
x2 + sin(x)

Solution:
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(b) f(x) = (x2 + 1) cosx
Solution:

(c) f(x) = sec(x)
1+tan(x)

Solution:

Example 3.59. Find f ′′(π/4) if f(x) = sec(x)
Solution:

Example 3.60. Find the equation of the line tangent to the graph of cosx at x = 0, π/2, π
Solution:

3.9 Implicit Differentiation

An equation of the form y = f(x) is said to define y explicitly as a function of x because the
variable y appears alone on one side of the equation. However, sometimes functions are defined
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by equations in which y is not alone on one side; for example, the equation

sin(x y) = y

is not of the form y = f(x).

Definition 3.61. We will say that a given equation in x and y defines the function f implicitly
if the graph of y = f(x) coincides with a portion of the graph of the equation.

3.62. In general, it is not necessary to solve an equation for y in terms of x in order to
differentiate the functions defined implicitly by the equation. We can differentiate both sides of
the equation and then solve for dy/dx, treating y as a (temporarily unspecified) differentiable
function of x.

• The resulting formula may involve both x and y. In order to obtain a formula for dy/dx
that involves x alone, we would have to solve the original equation for y in terms of x and
then substitute into the formula we already have. Sometimes, it is impossible to solve for
y in terms of x and we are forced to leave the formula for dy/dx in terms of x and y.

3.63. Implicit differentiation can be used to find formula for derivatives of rational powers of
x from formula for derivatives of integer powers of x. The idea is to write y = xm/n as yn = xm.
(See p. 202–203 in [1].)

Example 3.64. Let 7 = x3 + xy + y2. Find dy
dx .

Solution:

Example 3.65. Let
√
y − sinx = ex. Find dy

dx .
Solution:

Example 3.66. Let x4 − 2xy3 + y5 = 32. Find dy
dx and also the slope of the tangent line to the curve at

(0, 2).
Solution:
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