

Sirindhorn International Institute of Technology Thammasat University

Department of Common and Graduate Studies

MAS 116: Solution for Problem Set 1

Semester/Year: 3/2008

Course Title: MAS116 (Mathematics I)

Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)

Section 1.1: 4, 10, 32

 (a) The natural domain of f is x ≠ -1, and for g it is the set of all x. Whenever x ≠ -1, f(x) = g(x), but they have different domains.

(b) The domain of f is the set of all x ≥ 0; the domain of g is the same.

10. (a) $g(3) = \frac{3+1}{3-1} = 2$; $g(-1) = \frac{-1+1}{-1-1} = 0$; $g(\pi) = \frac{\pi+1}{\pi-1}$; $g(-1.1) = \frac{-1.1+1}{-1.1-1} = \frac{-0.1}{-2.1} = \frac{1}{21}$; $g(t^2-1) = \frac{t^2-1+1}{t^2-1-1} = \frac{t^2}{t^2-2}$

(b) $g(3) = \sqrt{3+1} = 2$; g(-1) = 3; $g(\pi) = \sqrt{\pi+1}$; g(-1.1) = 3; $g(t^2-1) = 3$ if $t^2 < 2$ and $q(t^2-1) = \sqrt{t^2-1+1} = |t|$ if $t^2 > 2$.

32. (i) x=0 causes division by zero

(ii) $q(x) = \sqrt{x} + 1 \text{ for } x > 0$

Section 1.3: 30, 34, 38, 40, 50, 54, 64, 65, 75

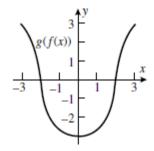
30. $(f+g)(x)=(2x^2+1)/[x(x^2+1)]$, all $x\neq 0$; $(f-g)(x)=-1/[x(x^2+1)]$, all $x\neq 0$; $(fg)(x)=(x^2+1)/[x(x^2+1)]$ $1/(x^2+1)$, all $x \neq 0$; $(f/g)(x) = x^2/(x^2+1)$, all $x \neq 0$

34. (a) $\sqrt{5s+2}$ (b) $\sqrt{\sqrt{x}+2}$ (c) $3\sqrt{5x}$ (d) $1/\sqrt{x}$ (e) $\sqrt[4]{x}$ (f) 0 (g) $1/\sqrt[4]{x}$ (h) |x-1|

38. $(f \circ g)(x) = \frac{x}{x^2 + 1}, x \neq 0; (g \circ f)(x) = \frac{1}{x} + x, x \neq 0$

40.
$$\frac{x}{x+1}$$

50. Note that g(f(-x)) = g(f(x)), so g(f(x)) is even.



54.
$$\frac{w^2 + 6w - (x^2 + 6x)}{w - x} = w + x + 6$$

$$\frac{(x+h)^2 + 6(x+h) - (x^2 + 6x)}{h} = \frac{2xh + h^2 + 6h}{h} = 2x + h + 6;$$

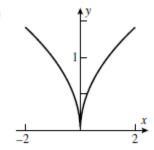
64. (a)
$$g(-x) = \frac{f(-x) + f(x)}{2} = \frac{f(x) + f(-x)}{2} = g(x)$$
, so g is even

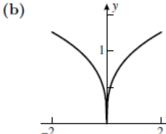
(b)
$$h(-x) = \frac{f(-x) - f(x)}{2} = -\frac{f(x) - f(-x)}{2} = -h(x)$$
, so h is odd

- 65. In Exercise 64 it was shown that g is an even function, and h is odd. Moreover by inspection f(x) = g(x) + h(x) for all x, so f is the sum of an even function and an odd function.
 - **75.** Yes, e.g. $f(x) = x^k$ and $g(x) = x^n$ where k and n are integers.

Section 1.4: 22

22. (a)

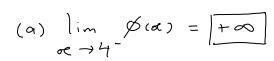


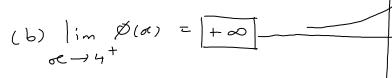


Exercise Set 2.1

Thursday, April 16, 2009 3:21 PM

2 You can "read off" the answer from the accompanying figure.

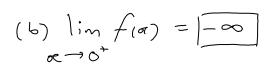


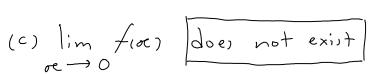


(c) From part (a) and (b),

(d) \$(4) is undefined

$$(4) (a) \lim_{\sigma e \to 0} f(\sigma e) = \boxed{1}$$





(d)
$$f(0) = [-2]$$
 = this is to black dot on the figure.

Exercise Set 2.2

(8) After plugging in
$$t=-2$$
 into $\frac{t^3+8}{t+2}$ we get $\frac{0}{0}$. This suggests that both the nominator and denominator have a factor of $(t+2)$.

$$\frac{t^{3}+8}{t+2} = \frac{(t+2)(t-2t+4)}{(t+2)\times 1}$$

$$= t^{2}-2t+4, \quad t \neq -2$$

$$= t^{3}-2 \quad \text{where don't care}$$

$$t \to -2 \quad \text{about the}$$

$$t \to -2 \quad \text{the therefore } t \to -2 \quad \text{of } f(t)$$

$$= (-2)^{2}-2(-2)+4$$

$$= 4+4+4 = \boxed{12}$$

Again, after plugging in
$$x=2$$
 into

$$\frac{x^{2}-4x+44}{x^{2}+x-6},$$
we get $\frac{0}{0}$. So, try factoring.

$$\frac{x^{2}-4x+44}{x^{2}+x-6} = \frac{(x-2)(x-2)}{(x-2)}$$

$$= \frac{x^{2}-4x+44}{x^{2}+x-6} = \frac{(x-2)(x-2)}{(x-2)}$$

$$= \frac{x-2}{x+3}, x \neq 2$$
So, $\lim_{x \to 2} \frac{x^{2}-4x+44}{x^{2}+x-6} = \lim_{x \to 2} \frac{x^{2}-2}{x+3} = \frac{2-2}{2+3}$

16 Plugging de=3 into de gives 3.

This suggests that the limit does not exist. In particular, we have the care of infinite limit. We now want to determine whether the limit is +00 or -00.

We want to find lim for; so

we consider æ near 3 but æ < 3

which implies

As æ - 3, we then have

$$1-\frac{3}{\alpha}\rightarrow 0$$

There fore, $\lim_{\infty \to 3^{-}} \frac{2}{\alpha - 3} = \lim_{\infty \to 3^{-}} \frac{1}{1 - \frac{3}{\alpha}}$

(20) Plugging in $\alpha=2$ into $\frac{\partial^2}{\partial x^2-4}$ gives $\frac{2}{0}$.

This suggests that the limit does not exist.

In particular, we have the care of infinite limit. We now want to determine whether the limit is to or -oo.

$$e^{2}-4$$
 70 if e 72
 $e^{2}-4$ 60 if e 62

So, e 70 if e 72
 $e^{2}-4$
and e 70 if e 72
 e 70 if e 72

Hence,
$$\lim_{\alpha \to 2^+} \frac{\alpha}{\alpha^2 - 4} = +\infty$$

$$\lim_{\alpha \to 2^-} \frac{\alpha}{\alpha^2 - 4} = -\infty$$

$$\frac{4-y}{2-\sqrt{y}} = \frac{(2-\sqrt{y})(2+\sqrt{y})}{2-\sqrt{y}} = 2+\sqrt{y}, \quad y \neq 4$$

$$\lim_{\alpha \to 4} \frac{4-y}{2-\sqrt{y}} = \lim_{\alpha \to 4} 2+\sqrt{y} = 2+\sqrt{4} = \boxed{4}$$

$$\frac{1}{26} + \frac{1}{26} = \frac{200}{200}$$

To find out whether the limit is $+\infty$ or $-\infty$, we note that for $\lim_{\sigma \in \mathbb{R}} f(\sigma)$, we consider the denear Q that is < 0.

So of 170
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$