ECS 452: Digital Communication Systems 2020/2
 Additional Examples 1

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. These codes cannot be Huffman codes. Why?
(a) $\{00,01,10,110\}$
(b) $\{01,10\}$
(c) $\{0,01\}$

Problem 2. Construct a random variable X (by specifying its pmf) whose corresponding Huffman code is $\{0,10,11\}$.

Problem 3. Consider a BSC whose crossover probability for each bit is $p=0.35$. Suppose $P[X=0]=0.45$.
(a) Draw the channel diagram.
(b) Find the channel matrix \mathbf{Q}.
(c) Find the joint pmf matrix \mathbf{P}.
(d) Find the row vector \underline{q} which contains the pmf of the channel output Y.
(e) Analyze the performance of all four reasonable detectors for this binary channel. Complete the table below:

$\hat{x}(y)$	$\hat{x}(0)$	$\hat{x}(1)$	$P(\mathcal{C})$	$P(\mathcal{E})$
y				
$1-y$				
1				
0				

Problem 4. Consider a BAC whose $Q(1 \mid 0)=0.35$ and $Q(0 \mid 1)=0.55$. Suppose $P[X=0]=$ 0.4.
(a) Draw the channel diagram.
(b) Find the joint pmf matrix \mathbf{P}.
(c) Find the row vector $\underline{\mathbf{q}}$ which contains the pmf of the channel output Y.
(d) Analyze the performance of all four reasonable detectors for this binary channel. Complete the table below:

$\hat{x}(y)$	$\hat{x}(0)$	$\hat{x}(1)$	$P(\mathcal{C})$	$P(\mathcal{E})$
y				
$1-y$				
1				
0				

Problem 5. Consider a DMC whose $\mathcal{X}=\{1,2,3\}, \mathcal{Y}=\{1,2,3\}$, and $\mathbf{Q}=\left[\begin{array}{lll}0.5 & 0.2 & 0.3 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.2 & 0.6\end{array}\right]$. Suppose the input probability vector is $\underline{\mathbf{p}}=[0.2,0.4,0.4]$.
(a) Find the joint pmf matrix \mathbf{P}.
(b) Find the row vector \mathbf{q} which contains the pmf of the channel output Y.
(c) Find the following probabilities:
(i) $P[X=1]$
(ii) $P[Y=2]$
(iii) $P[X=1, Y=2]$
(iv) $P[Y=2 \mid X=1]$
(v) $P[X=1 \mid Y=2]$
(vi) Find the error probability of the naive decoder.
(vii) Find the error probability of the (DIY) decoder $\hat{x}(y)=4-y$.

Problem 6. Optimal code lengths that require one bit above entropy: The source coding theorem says that the Huffman code for a random variable X has an expected length strictly less than $H(X)+1$. Give an example of a random variable for which the expected length of the Huffman code (without any source extension) is very close to $H(X)+1$.

Problem 7. A channel encoder maps blocks of two bits to five-bit (channel) codewords. The four possible codewords are $00000,01000,10001$, and 11111. A codeword is transmitted over the BSC with crossover probability $p=0.1$. What is the minimum (Hamming) distance $d_{\text {min }}$ among the codewords?

Problem 8. Consider random variables X and Y whose joint pmf is given by

$$
p_{X, Y}(x, y)= \begin{cases}c(x+y), & x \in\{1,3\} \text { and } y \in\{2,4\}, \\ 0, & \text { otherwise } .\end{cases}
$$

Evaluate the following quantities.
(a) c
(b) $H(X, Y)$
(c) $H(X)$
(d) $H(Y)$
(e) $H(X \mid Y)$
(f) $H(Y \mid X)$
(g) $I(X ; Y)$

