EES 351: In-Class Exercise \# 9

Instructions

1. Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your
former groups in this class.
2. Only one submission is needed for
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only
- Only for those who can directly work on the posted files using devices with pen input.

Date: 23 / 9 / 2020

Name	ID	

- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

Do not panic.

1. Consider the "modulator" shown below. Note that the first operation is a summation (not multiplication).

$(\cdot)^{2}$ is a "square" device; its output is created by squaring its input in the time domain.

$H_{\mathrm{BP}}(f)$ is an LTI device whose frequency response is

$$
H_{\mathrm{BP}}(f)= \begin{cases}1, & \left|f-f_{c}\right| \leq 332, \\ 1, & \left|f+f_{c}\right| \leq 332, \\ 0, & \text { otherwise } .\end{cases}
$$

Let $A_{c}=2, f_{c}=2018$, and

$$
M(f)= \begin{cases}1, & |f| \leq 54 \\ 0, & \text { otherwise }\end{cases}
$$

a. Plot the corresponding $X(f)$.
$v(t)=(m(t)+2 \cos (2 \pi(2018) t))^{2}=m^{2}(t)+4 \cos ^{2}(2 \pi(2018) t)+4 m(t) \cos (2 \pi(2018) t)$.
$v(t)$ is input into a band-pass filter. So, we should look at $V(f)$.
There are three terms in $v(t)$. Let's analyze them in the frequency domain separately.
(1) By the convolution-in-frequency property: $m^{2}(t)=m(t) \times m(t) \stackrel{F}{\rightleftharpoons} M(f) * M(f)$.

In lecture, we have seen how to do self-convolution of a rectangular function. In this problem, $a=-54, b=54$, $h=1$, and the dummy variable is f instead of t. This gives

(Actually, the actual shape of the convolution is not as important as the fact that the result is band-limited to 108 Hz .
(2) From $\cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$, we have

$$
4 \cos ^{2}(2 \pi(2018) t)=2+2 \cos (2 \pi(4036) t)
$$

(3) Fourier transform of the term $4 m(t) \cos (2 \pi(2018) t)$ can be found by our modulation formula:

$$
g(t) A \cos \left(2 \pi\left(f_{c}\right) t\right) \stackrel{F}{\rightleftharpoons} \frac{A}{2} G\left(f-f_{c}\right)+\frac{A}{2} G\left(f-\left(-f_{c}\right)\right) .
$$

b. (Optional) Find $m(t)$ and $x(t)$.
$M(f)$ is a rectangular function in the frequency domain. So, $m(t)$ is a sinc function in the time domain. The area of the rectangular function is $1 \times 54-(-54)=108$. So,

$$
m(t)=108 \operatorname{sinc}\left(2 \pi f_{m} t\right)
$$

for some f_{m}.
The width of the rectangular function is $54-(-54)=108$. So, the first zero-crossing of the sinc function should occur at $t=\frac{1}{108}$. From $\operatorname{sinc}(\theta)=\frac{\sin (\theta)}{\theta}$, we see that the zero-crossing of $\operatorname{sinc}(\theta)$ are the same as the zero-crossings of $\sin (\theta)$ (except when $\theta=0$).

Period of sine $=2 \times \frac{1}{108}$.
Frequency of sine $=\frac{1}{\text { Period of sine }}=\frac{108}{2}$
So, $f_{m}=\frac{108}{2}$ and $m(t)=108 \operatorname{sinc}(108 \pi t)$

Back in the analysis of $v(t)$, we saw that $4 m(t) \cos (2 \pi(2018) t)$ passes through the filter unchanged. So, $x(t)=4 m(t) \cos (2 \pi(2018) t)=432 \operatorname{sinc}(108 \pi t) \cos (4026 \pi t)$.

