EES 351: In-Class Exercise # 7

Instructions

4

- 1. Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your
- former groups in this class. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer
- is correct without showing how you get your answer.
 Only one submission is needed for each group.
- Only one submission is needed for each grou You have two choices for submission:
- (a) Online submission via Google Classroom
 - PDF only.
 - Only for those who can directly work on the posted files using devices with pen input.
 Paper size should be the same as the posted file.
 - Paper size should be the same as the posted file.
 No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member.
 - (You may add the IDs of other members, exercise #, or other information as well.) (b) Hardcopy submission

Do not panic.

1. Consider a channel with multipath propagation. Its impulse response is of the form

$$h(t) = \sum_{k=1}^{\nu} \beta_k \delta(t - \tau_k)$$

a. Suppose v = 2, $\beta_1 = \beta_2 = 3$, $\tau_1 = 2$, $\tau_2 = 5$.

For each of the following channel input x(t), find the corresponding channel output y(t). Note that the output should be of the form $y(t) = A\cos(2\pi f_0 t + \theta_0)$ for some constants A, f_0 , and θ_0 where θ_0 is in degrees.

Channel input	Channel output	
$x(t) = \cos(\pi t)$	y(t) = 3x(t-2) + 3x(t-5) = $3\cos(\pi(t-2)) + 3\cos(\pi(t-5))$ = $3\cos(\pi t - 2\pi) + 3\cos(\pi t - 5\pi)$ = $3\cos(\pi t) - 3\cos(\pi t) \cos(\theta - \pi) = -\cos(\theta)$ = $0\cos(\pi t + 0^{\circ}) \equiv 0$ Because the amplitude is 0, any angle	π period of cosine: $\cos(\theta) = \cos(\theta + n2\pi)$ or any integer <i>n</i> . and freq. are OK here.
$x(t) = \cos\left(\frac{\pi}{2}t\right)$ Conversion to the second se	y(t) = 3x(t-2) + 3x(t-5) = $3\cos\left(\frac{\pi}{2}(t-2)\right) + 3\cos\left(\frac{\pi}{2}(t-5)\right)$ = $3\cos\left(\frac{\pi}{2}t - \pi\right) + 3\cos\left(\frac{\pi}{2}t - \frac{5\pi}{2}\right)$ sion to phasor form $\Leftrightarrow 3 \angle -180^\circ + 3 \angle -90^\circ = 3\sqrt{2}\angle -135^\circ$ ack to time domain $\Leftrightarrow 3\sqrt{2}\cos\left(\frac{\pi}{2}t\right) - 135^\circ$	We can use phasor representation to combine sinusoids with the same frequency.

Note that the $2\pi f_0 t$ part of the cosine should be the same. Here, it is $\frac{\pi}{2}t$.

b. Suppose v = 1, $\beta_1 = 3$, $\tau_1 = 2$. Plot |H(f)| from f = -1 to f = 1 Hz.

When v = 1, we have $h(t) = \beta_1 \delta(t - \tau_1)$. With the provided values, we have $h(t) = 3\delta(t - 2)$. Therefore, $H(f) = 3e^{-j2\pi(2)f}$ and $|H(f)| = 3|e^{-j4\pi f}| = 3 \times 1 = 3$.

Note that this is a distortionless channel. So, the magnitude spectrum should be flat.

Date: 16 / 9 / 2020

Date: 107 97 2020				
Name	ID (last 3 digits)			