EES 351: In-Class Exercise \# 6

Instructions

1. Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer
is correct without showing how you get your answer.
3. Only one submission is needed for each group.
4. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only

Date: $11 / 9 / 2020$	ID	
Name	(asa diati	

- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)

[^0]5. Do not panic.

In this problem, we have three "devices".

- $(.)^{2}$ is a "square" device. As the name suggests, its output is created by squaring its input in the time domain.
- $H_{1}(f)$ is an LTI device whose frequency response is $H_{1}(f)= \begin{cases}1, & |f|<315, \\ 0, & \text { otherwise. }\end{cases}$
- $H_{2}(f)$ is an LTI device whose frequency response is $H_{2}(f)= \begin{cases}1, & |f|>315, \\ 0, & \text { otherwise } .\end{cases}$

Find the output $y(t)$ for each of the systems below.
$j 2 \pi f_{0} t=351 \pi t \Rightarrow f_{0}=\frac{351}{2}=175.5$
$\left(\right.$ a) $x(t)=e^{j 351 \pi t} \longrightarrow H_{1}(f) \longrightarrow y(t)$

$$
H_{1}(175.5)=1 \text { because }|175.5|<315 .
$$

$$
y(t)=H_{1}\left(f_{0}\right) e^{j 2 \pi f_{0} t}=H_{1}(175.5) e^{j 2 \pi(175.5) t}=1 e^{j 351 \pi t}=e^{j 351 \pi t}
$$

$$
\triangleleft \text { Recall that }
$$

(b) $x(t)=\cos (351 \pi t) \longrightarrow H_{1}(f) \longrightarrow y(t)$

$$
\cos \left(2 \pi f_{0} t\right) \rightarrow H(f) \rightarrow \frac{1}{2} H\left(f_{0}\right) e^{j 2 \pi f_{0} t}+\frac{1}{2} H\left(-f_{0}\right) e^{-j 2 \pi f_{0} t}
$$

$$
=H\left(f_{0}\right) \cos \left(2 \pi f_{0} t\right)
$$

$$
y(t)=H_{1}\left(f_{0}\right) \cos \left(2 \pi f_{0} t\right)=H_{1}(175.5) \cos (2 \pi(175.5) t)=\cos (351 \pi t)
$$

(c) $x(t)=\cos (351 \pi t) \longrightarrow H_{2}(f) \longrightarrow y(t)$

$$
\begin{gathered}
y(t)=H_{2}\left(f_{0}\right) \cos \left(2 \pi f_{0} t\right)=H_{2}(166.5) \cos (2 \pi(166.5) t)=0 \\
H_{2}(175.5)=0 \text { because }|175.5|>315 .
\end{gathered}
$$

(d) $x(t)=\cos (351 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{x^{2}(t)} H_{1}(f) \longrightarrow y(t)$

$$
\begin{aligned}
& x^{2}(t)=\cos ^{2}(351 \pi t)=\left(\frac{e^{j 351 \pi t}+e^{-j 351 \pi t}}{2}\right)^{2}=\frac{1}{4} e^{j 2 \pi(351) t}+\left(\frac{1}{2}\right)+\frac{1}{4} e^{j 2 \pi(-351) t} \\
& y(t)=\frac{1}{4} \underbrace{H_{1}(351)}_{0} e^{j 2 \pi(351) t}+\frac{1}{2} \overbrace{H_{1}(0)}^{1}+\frac{1}{4} \underbrace{H_{1}(-351)}_{0} e^{j 2 \pi(-351) t}=\frac{1}{2}
\end{aligned}
$$

So, $x^{2}(t)$ is simply a linear combination of complex-
exponential functions. Therefore, we can apply our * to each term.

[^0]: (b) Hardcopy submission

