EES 351: In-Class Exercise # 6

Instructions

- Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your
- former groups in this class. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer 2
- is correct without showing how you get your answer. Only one submission is needed for each group.
- 3. 4. You have two choices for submission:
 - (a) Online submission via Google Classroom
 - PDF only.
 - Only for those who can directly work on the posted files using devices with pen input.
 - Paper size should be the same as the posted file.
 - No scanned work, photos, or screen capture. Your file name should start with the 10-digit student ID of one member.
 - (You may add the IDs of other members, exercise #, or other information as well.)
- (b) Hardcopy submission Do not panic 5

In this problem, we have three "devices".

- is a "square" device. As the name suggests, its output is created by squaring its input in the time domain.
- $H_1(f)$ is an LTI device whose <u>frequency response</u> is $H_1(f) = \begin{cases} 1, & |f| < 315, \\ 0, & \text{otherwise.} \end{cases}$
- $H_2(f)$ is an LTI device whose <u>frequency response</u> is $H_2(f) = \begin{cases} 1, & |f| > 315, \\ 0, & \text{otherwise.} \end{cases}$

Find the output y(t) for each of the systems below.

$$j2\pi f_0 t = 351\pi t \implies f_0 = \frac{351\pi}{2} = 175.5$$
(a) $x(t) = e^{j351\pi t} \longrightarrow H_1(f) \xrightarrow{2} y(t)$
 $H_1(175.5) = 1 \text{ because } |175.5| < 315.$

$$y(t) = H_1(f_0)e^{j2\pi f_0 t} = H_1(175.5)e^{j2\pi(175.5)t} = 1e^{j351\pi t} = e^{j351\pi t}$$

\$\sigma Recall that

(b)
$$x(t) = \cos(351\pi t) \longrightarrow H_1(f) \longrightarrow y(t)$$

 $y(t) = H_1(f_0)\cos(2\pi f_0 t) = H_1(175.5)\cos(2\pi (175.5)t) = \cos(351\pi t)$
 $x(t) = \cos(351\pi t) \longrightarrow H_1(f_0) + \frac{1}{2}H(f_0)e^{j2\pi f_0 t} + \frac{1}{2}H(-f_0)e^{-j2\pi f_0 t} + \frac{1}{2}H(-f_0)e^$

(c)
$$x(t) = \cos(351\pi t) \longrightarrow H_2(f) \longrightarrow y(t)$$

 $y(t) = H_2(f_0) \cos(2\pi f_0 t) = H_2(166.5) \cos(2\pi (166.5)t) = 0$
 $H_2(175.5) = 0$ because $|175.5| \ge 315$.

(d)
$$x(t) = \cos(351\pi t) \longrightarrow (\cdot)^2 \xrightarrow{x^2(t)} H_1(f) \longrightarrow y(t)$$
 whose freq. is 0
(e) $x^2(t) = \cos^2(351\pi t) = \left(\frac{e^{j351\pi t} + e^{-j351\pi t}}{2}\right)^2 = \frac{1}{4}e^{j2\pi(351)t} + \left(\frac{1}{2}\right) + \frac{1}{4}e^{j2\pi(-351)t}$ So, $x^2(t) = \frac{1}{4}H_1(351)e^{j2\pi(351)t} + \frac{1}{2}H_1(0) + \frac{1}{4}H_1(-351)e^{j2\pi(-351)t} = \frac{1}{2}$ we can

So, $x^2(t)$ is simply a linear combination of complexexponential functions. Therefore, we can apply our \star to each term.

Date: 11 / 9 / 2020			
Name	ID (last 3 digits)		

Recall that

One can view the constant $\frac{1}{2}$ as a

 $\frac{1}{2}e^{j2\pi(0)t}$

complex-expo. function

H(f)

 $\rightarrow H(f_0)e^{j2\pi f_0 t}$