EES 351: In-Class Exercise \# 2

Instructions

1. Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your former groups in this class.
2. $[$ ENRE $]=$ Explanation is not required for this exercise
3. Only one submission is needed for each group.
4. You have two choices for submission
(a) Online submission via Google Classroom

- PDF only
- Only for those who can directly work on the posted files using devices with pen input.

Date: $26 / 8 / 2020$			
Name	ID		
Prapun	5	5	5

- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

5. Do not panic.
6. [ENRPr] Consider each $g(t)$ defined below.

Let $G(f)$ be its Fourier transform. Plot $G(f)$ from $f=-4$ to $f=4 \mathrm{~Hz}$.
a. $g(t)=2 e^{j 3 \pi t}$
$A e^{j 2 \pi f_{0} t} \stackrel{\mathcal{F}}{\rightleftharpoons} A \delta\left(f-f_{0}\right)$

Here, $A=2$.
Setting $j 2 \pi f_{0} t=j 3 \pi t$, we get $f_{0}=1.5$.

2. [ENRPr] Signals $x(t)$ and $y(t)$ are plotted below.

a) Plot the signal $w(t)=2 x(t-6)+3 x(t+6)$.
b) Suppose $y(t)=c_{1} x\left(c_{2} t+c_{3}\right)$. Find the values of the constants c_{1}, c_{2}, and c_{3}.

$$
c_{1}=3, c_{2}=-3, c_{3}=\underline{15} .
$$

This notation means
we replace t by " $-t$ ".
b. $g(t)=3 \cos (4 \pi t)$

$A \cos \left(2 \pi f_{0} t\right) \stackrel{\mathcal{F}}{\rightleftharpoons} \frac{A}{2} \delta\left(f-\left(-f_{0}\right)\right)+\frac{A}{2} \delta\left(f-f_{0}\right)$

Remark: There is no nonzero overlapping part between $3 \boldsymbol{x}(\boldsymbol{t}+$ $6)$ and $\mathbf{2 x}(\boldsymbol{t}-6)$. Therefore,

Caution: One common mistake is that, in the third step, when we shift the graph to the right by 5 units, we can't just put " -5 " blindly into the expression and get $x(-3 t-5)$; we need to replace t by $t-5$.

