## EES 351: In-Class Exercise # 17

## Instructions

- Work alone or in a group of no more than three students. The group cannot be the same as any of your former gr after the midtern
- Only one submission is needed for each group 3. 4.
  - **ENRE** (Explanation is not required for this exercise.) You have two choices for submission: (a) Online submission via Google Classroom
    - PDF only.
      - Only for those who can directly work on the posted files using devices with pen input
      - Paper size should be the same as the posted file. No scanned work, photos, or screen capture.

Your file name should start with the 10-digit student ID of one member. (You may add the IDs of other members, exercise #, or other information as well.) (b) Hardcopy submission

```
Do not panic.
5
```

In QAM system, the transmitted signal is of the form 1.

$$x_{\text{QAM}}(t) = m_1(t)\sqrt{2}\cos(2\pi f_c t) + m_2(t)\sqrt{2}\sin(2\pi f_c t).$$

Here, we want to express  $x_{OAM}(t)$  in the form

$$x_{\text{QAM}}(t) = \sqrt{2}E(t)\cos(2\pi f_c t + \phi(t)),$$

where  $E(t) \ge 0$  and  $\phi(t) \in (-180^\circ, 180^\circ]$ .

This problem assumes the messages are piecewise constant. Their values during three time intervals are listed below. Find the values of E(t) and  $\phi(t)$  during the corresponding time intervals.

| Intervals     | $m_1(t)$ | $m_2(t)$ | E(t)        | $\phi(t)$ | $m_1 - jm_2$                               |
|---------------|----------|----------|-------------|-----------|--------------------------------------------|
| $0 \le t < 1$ | 3        | 3        | $3\sqrt{2}$ | -45°      | $3 - 3j = 3\sqrt{2} \angle -45^{\circ}$    |
| $1 \le t < 2$ | 0        | -3       | 3           | 90°       | $3j = 3 \angle 90^{\circ}$                 |
| $2 \le t < 3$ | -4       | 3        | 5           | -143.13°  | $-4 - 3j \approx 5 \angle -143.13^{\circ}$ |

2. Consider five plots below. The top one is the baseband message signal m(t) that is used in the modulation to create an FM signal. Identify which plot is  $x_{FM}(t)$ .



For example, the time when m(t) has highest value should correspond to the time when FM signal has the highest frequency.

| Date: 6 / 11 / 2020 |                    |  |  |  |  |  |  |  |
|---------------------|--------------------|--|--|--|--|--|--|--|
| Name                | ID (last 3 digits) |  |  |  |  |  |  |  |
|                     |                    |  |  |  |  |  |  |  |
|                     |                    |  |  |  |  |  |  |  |
|                     |                    |  |  |  |  |  |  |  |