EES 351: In-Class Exercise \# 15

Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file.

Date: $30 / 10 / 2020$			
Name	ID		
	datili)		

- No scanned work, photos, or screen capture
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.
5. Continue from the previous in-class exercise. We considered AM transmission of the message $m(t)$ shown on the left below.

The middle and the rightmost plots show two AM signals $x_{1}(t)$ and $x_{2}(t)$ produced by using two different values of modulation index. During the previous in-class exercise, we have calculated the values of A and μ. They are summarized in the table below.
Suppose $m(t)$ is a periodic triangular wave with average power $\left\langle m^{2}(t)\right\rangle=147$.
Calculate the corresponding value of the power efficiency for each case.

$x_{\mathrm{AM}}(t)$	A	μ	Power Efficiency
$x_{1}(t)$	35	60%	$\mathrm{Eff}=\frac{\frac{P_{m}}{2}}{\frac{A^{2}}{2}+\frac{P_{m}}{2}}=\frac{1}{\frac{A^{2}}{P_{m}}+1}=\frac{1}{\frac{5^{2}}{147}+1}=\frac{3}{28} \approx 0.1071=10.71 \%$
$x_{2}(t)$	7	300%	$\mathrm{Eff}=\frac{\frac{P_{m}}{2}}{\frac{A^{2}}{2}+\frac{P_{m}}{2}}=\frac{1}{\frac{A^{2}}{P_{m}}+1}=\frac{1}{\frac{7^{2}}{147}+1}=\frac{3}{4} \approx 0.75=75 \%$

2. [ENRPr] Consider a rectifier demodulator shown below:

Assume that $m(t)$ has 0 average and that it is band-limited to 10 kHz .
The frequency response of the LPF is $H_{L P F}(f)= \begin{cases}3, & |f| \leq 14 \mathrm{kHz}, \\ 0, & \text { otherwise } .\end{cases}$
Assume that $m(t) \geq-4$ at all time.
Find $\hat{m}(t)$. (Your answer will contain $m(t)$.)

Here, $A(t)=4+m(t)$. Because $m(t)$ is ≥-4 at all time, we know that $A(t)$ is always nonnegative.
Furthermore, from $A(t)=4+m(t)$, we know that if $m(t)$ is band-limited to B, then so is $A(t)$.
We are given that $m(t)$ is band-limited to 10 kHz . Therefore, we also know that $A(t)$ is band-limited to 10 kHz as well.
In class, we have shown that, if

1) $A(t)$ is band-limited to B,
2) $A(t)$ is always nonnegative,
3) $f_{c}>2 B$, and
4) $B<W<f_{c}-B$,

Then the output of the LPF is $\frac{g}{\pi} A(t)$.

We have already shown that conditions (1) and (2) are satisfied with $B=10 \mathrm{kHz}$.
From $f_{c}=2 \times 10^{4}=30 \mathrm{kHz} . B=10 \mathrm{kHz} . W=14 \mathrm{kHz}$, we can check that conditions (3) and (4) are satisfied as well.
Here, $g=3$.
Therefore, the output of the LPF is $\frac{g}{\pi} A(t)=\frac{3}{\pi}(4+m(t))=\frac{12}{\pi}+\frac{3}{\pi} m(t)$.
Finally, the DC blocking box removes the DC component. Here, because we assume that $\langle m(t)\rangle=0$, the DC component is

$$
\left\langle\frac{12}{\pi}+\frac{3}{\pi} m(t)\right\rangle=\frac{12}{\pi}+\frac{3}{\pi}\langle m(t)\rangle=\frac{12}{\pi} .
$$

So,

$$
\widehat{m}(t)=\frac{12}{\pi}+\frac{3}{\pi} m(t)-\frac{12}{\pi}=\frac{3}{\pi} m(t)
$$

