EES 351: In-Class Exercise \# 13

Instructions

Date: $21 / 10 / 2020$	ID	
Name	(ans dation	

1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file
- No scanned work, photos, or screen capture
- Your file name should start with the 10 -digit student ID of one member
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.
5. Consider a switching modem:

Switching Modulator
Switching Demodulator
The ON times of both switching boxes are set to be the same as the nonnegative part of $\cos (60 \pi t)$. $M(f)$ is plotted below. The frequency responses of the filters are also specified.

$$
H_{\mathrm{BPF}}(f)= \begin{cases}2, & |f \pm 30|<15 \\ 0, & \text { otherwise } .\end{cases}
$$

$$
H_{\mathrm{LPF}}(f)= \begin{cases}3, & |f|<14 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $x(t)$. (The final answer can contain $m(t)$. There is no need to find the expression for $m(t)$.)

Here, $B=10, f_{c}=30, g=2$, and $W=15$. First, we need to check two conditions:
(1) $f_{c}=30$ and $2 B=20$; so, $f_{c}>2 B$.
(2) $B=10, W=15$, and $f_{C}-B=20$; so, $B<W<f_{C}-B$.

From the two conditions above, we can conclude easily that

$$
x(t)=\frac{2}{\pi} g m(t) \cos \left(2 \pi f_{\mathrm{c}} t\right)=\frac{2}{\pi}(2) m(t) \cos (2 \pi(30) t)=\frac{4}{\pi} m(t) \cos (60 \pi t) .
$$

(b) Find $\hat{m}(t)$. (The final answer can contain $m(t)$. There is no need to find the expression for $m(t)$.)

Here, $B=10, f_{c}=30, g=3, W=14$, and $A_{c}=\frac{4}{\pi}$. First, we need to check two conditions:
(1) $f_{c}=30$ and $2 B=20$; so, $f_{c}>2 B$.
(2) $B=10, W=14$, and $f_{C}-B=20$; so, $B<W<f_{C}-B$.

From the two conditions above, we can conclude easily that

$$
\widehat{m}(t)=\frac{g A_{c}}{\pi} m(t)=\frac{3 \times \frac{4}{\pi}}{\pi} m(t)=\frac{12}{\pi^{2}} m(t)
$$

