EES 351: In-Class Exercise \# 12

Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups
after the midterm.
[ENRE] Explanation is not required for this exercise.
2. Only one submission is needed for each group.

You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only
- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file
- No scanned work, photos, or screen capture.

Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

Do not panic.

Date: $16 / 10 / 2020$			
Name	ID		

1. Consider the impulse train $g(t)$ shown on the left in Figure 1. Plot its Fourier transform $G(f)$ from $f=-1$ to $f=1$.

Figure 1
2. Consider the rectangular pulse train $r(t)$ shown in Figure 2.

[4.53]

$$
r(t)=\frac{1}{2}+\frac{2}{\pi} \cos \left(2 \pi f_{0} t\right)-\frac{2}{3 \pi} \cos \left(2 \pi\left(3 f_{0}\right) t\right)+\frac{2}{5 \pi} \cos \left(2 \pi\left(5 f_{0}\right) t\right)+\cdots
$$

Using Fourier series expansion, we can write $r($

where $f_{0}=\frac{1}{T_{0}}$. Write the appropriate values of the constants in the boxes above.
3. Consider the periodic signal $y(t)$ shown in Figure 3.

Figure 3

$$
@ t=\frac{T_{0}}{2}: r(t)=0 \text { and } y(t)=-1 .
$$

Therefore, from $y(t)=\alpha+\beta r(t)$, we have $-1=\alpha$.
Compare with Figure 2. Observe that $y(t)=\alpha+\beta r(t)$. Find the constants α and β.

