EES 351: In-Class Exercise \# 11

Instructions

Date: 9 / 10/2020

Name	ID		
	ana saime		

1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups
2. [ENRE] Explanation is not required for this exercise.
3. Only one submission is needed for each group.
4. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

5. Do not panic.
6. Consider two signals $g(t)$ and $y(t)=\sum_{k=-\infty}^{\infty} g(t-4 k)$.

The signal $g(t)$ is plotted below. Note that $g(t)=0$ outside of the interval $[0,3]$.

For each signal, calculate its (a) time average, (b) (total) energy, (c) (average) power and then indicate (by putting a Y (for a yes) or an N (for a no)) in part (d) whether it is an energy signal and in part (e) whether it is a power signal.

	$g(t)$	$y(t)$
(a) Time Average	$\begin{aligned} \langle g(t)\rangle & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t \\ \text { For } T>3, \int_{-T}^{T} g(t) d t & =\int_{0}^{3} g(t) d t=1+3+1=5 . \end{aligned}$ Therefore, $\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \times 5=0 .$	For periodic signal, $\begin{aligned} \langle y(t)\rangle & =\frac{1}{T_{0}} \int_{T_{0}} y(t) d t \\ & =\lim _{T \rightarrow \infty} \frac{1}{4}(1+3+1)=\frac{5}{4} . \end{aligned}$
(b) (Total) Energy	$\begin{aligned} E_{g} & =\int_{-\infty}^{\infty}\|g(t)\|^{2} d t \\ & =1^{2}+3^{2}+1^{2}=11 . \end{aligned}$	By definition, $E_{y}=\int_{-\infty}^{\infty}\|y(t)\|^{2} d t$. Now, note that, in this integration, each period of $y(t)$ gives 11 units of energy. So, its total energy is $\cdots+11+11+11+\cdots=\infty .$ Alternatively, in the later part, we will show that $y(t)$ is a power signal. Any power signal has infinite energy.
(c) (Average) Power	$\left.P_{g}=\left.\langle \| g(t)\right\|^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\|g(t)\|^{2} d t .$ For $T>3$, $\int_{-T}^{T}\|g(t)\|^{2} d t=\int_{0}^{3} g^{2}(t) d t=1^{2}+3^{2}+1^{2}=11$. Therefore, $\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\|g(t)\|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \times 11=0$. Alternatively, in the later part, we will show that $\mathrm{g}(t)$ is an energy signal. Any energy signal has zero average power.	For periodic signal, $\begin{aligned} P_{y} & =\frac{1}{T_{0}} \int_{T_{0}}\|y(t)\|^{2} d t \\ & =\frac{1}{4}\left(1^{2}+3^{2}+1^{2}\right)=\frac{11}{4} . \end{aligned}$
(d) Energy Signal?	$\begin{aligned} & \mathrm{Y} \\ & E_{g}=11 \text { is " }>0 \text { " and " }<\infty \text { ". } \end{aligned}$ Therefore, $g(t)$ is an energy signal.	N $y(t)$ can not be an energy signal because $E_{y}=\infty$. Alternatively, in the later part, we will show that $y(t)$ is a power signal. Any power signal cannot be an energy signal.
(e) Power Signal?	N Because we have shown that $g(t)$ is an energy signal, it can not be a power signal.	$P_{y}=\frac{11}{4}$ is " >0 " and " $<\infty$ ". Therefore, $y(t)$ is a power signal.

