EES 351: In-Class Exercise # 11

Instructions

- Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm. 2
- [ENRE] Explanation is not required for this exercise. 3. 4.
 - Only one submission is needed for each group. You have two choices for submission: (a) Online submission via Google Classroom
 - PDF only. •
 - Only for those who can directly work on the posted files using devices with pen input.
 - Paper size should be the same as the posted file. No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member.
 - (You may add the IDs of other members, exercise #, or other information as well.) submission
- (b) Hardcopy 5 Do not panic.
- 1. Consider two signals g(t) and $y(t) = \sum_{k=-\infty}^{\infty} g(t-4k)$.

Date: 9 / 10 / 2020			
Name	ID (last 3 digits)		

The signal g(t) is plotted below. Note that g(t) = 0 outside of the interval [0,3].

For each signal, calculate its (a) time average, (b) (total) energy, (c) (average) power and then indicate (by putting a Y (for a yes) or an N (for a no)) in part (d) whether it is an energy signal and in part (e) whether it is a power signal.

	$g\left(t ight)$	y(t)
(a) Time Average	$ \langle g(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt $ For $T > 3$, $\int_{-T}^{T} g(t) dt = \int_{0}^{3} g(t) dt = 1 + 3 + 1 = 5$. Therefore, $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) dt = \lim_{T \to \infty} \frac{1}{2T} \times 5 = 0. $	For periodic signal, $\langle y(t) \rangle = \frac{1}{T_0} \int_{T_0} y(t) dt$ $= \lim_{T \to \infty} \frac{1}{4} (1+3+1) = \frac{5}{4}.$
(b) (Total) Energy	$E_g = \int_{-\infty}^{\infty} g(t) ^2 dt$ = $1^{2} + 3^2 + 1^2 = 11.$	By definition, $E_y = \int_{-\infty}^{\infty} y(t) ^2 dt$. Now, note that, in this integration, each period of $y(t)$ gives 11 units of energy. So, its total energy is $\dots + 11 + 11 + 11 + \dots = \infty$. Alternatively, in the later part, we will show that $y(t)$ is a power signal. Any power signal has infinite energy.
(c) (Average) Power	$P_g = \langle g(t) ^2 \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) ^2 dt.$ For $T > 3$, $\int_{-T}^{T} g(t) ^2 dt = \int_0^3 g^2(t) dt = 1^2 + 3^2 + 1^2 = 11.$ Therefore, $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(t) ^2 dt = \lim_{T \to \infty} \frac{1}{2T} \times 11 = 0.$ Alternatively, in the later part, we will show that $g(t)$ is an energy signal. Any energy signal has zero average power.	For periodic signal, $P_{y} = \frac{1}{T_{0}} \int_{T_{0}} y(t) ^{2} dt$ $= \frac{1}{4} (1^{2} + 3^{2} + 1^{2}) = \frac{11}{4}.$
(d) Energy Signal?	Y $E_g = 11$ is "> 0" and "< ∞ ". Therefore, $g(t)$ is an energy signal.	N $y(t)$ can not be an energy signal because $E_y = \infty$. Alternatively, in the later part, we will show that $y(t)$ is a power signal. Any power signal cannot be an energy signal.
(e) Power Signal?	N Because we have shown that $g(t)$ is an energy signal, it can not be a power signal.	Y $P_y = \frac{11}{4}$ is "> 0" and "< ∞ ". Therefore, $y(t)$ is a power signal.