EES 351: Principles of Communications

2020/1
HW 5 - Due: Not Due
Lecturer: Prapun Suksompong, Ph.D.

Problem 1. 1
(a) Consider the cosine pulse

$$
p(t)= \begin{cases}\cos (10 \pi t), & -1 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(i) Sketch $p(t)$ for $-3 \leq t \leq 3$.
(ii) Find $P(f)$ analytically.
(iii) Sketch $P(f)$ from -10 Hz to 10 Hz .

[^0](b) Consider the cosine pulse
\[

p(t)= $$
\begin{cases}\cos (10 \pi t), & 2 \leq t \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$
\]

(i) Find $P(f)$ analytically.
(ii) Use MATLAB. Mimic the code in specrect.m to plot the spectrum of $p(t)$. Follow the settings below:

- Consider the time t from 0 to $10[\mathrm{~s}]$ when you set up the time vector.
- Use the sampling frequency of 500 samples per sec. So, the sampling interval (the time between adjacent samples) is $T_{s}=1 / 500$.
- With the above sampling frequency, plotspect will plot the magnitude spectrum from - 250 to 250 Hz . Use the function xlim (or the magnifier glass GUI) to limit your frequency view to be only from -10 to +10 Hz .
(iii) Also in MATLAB, add the plot of your analytical answer from part (i) into the same figure as part (ii).
i. Put/paste your plots in the provided space on the next page.
ii. Compare the two plots. (Write some description/observation. Are they the same? How can you tell?)
Caution: The built-in sinc function in MATLAB is defined using the normalized version. So, you will need to remove a factor of π from the argument of each sinc function found in part (i) when you type it into MATLAB.

Problem 2. You are given the baseband signals (i) $m(t)=\cos 1000 \pi t$; (ii) $m(t)=2 \cos 1000 \pi t+$ $\cos 2000 \pi t$; (iii) $m(t)=(\cos 1000 \pi t) \times(\cos 3000 \pi t)$. For each one, do the following.
(a) Sketch the spectrum of $m(t)$.
(b) Sketch the spectrum of the DSB-SC signal $m(t) \cos (10,000 \pi t)$.
[Lathi and Ding, 2009, Q4.2-1]

Problem 3. Given a system with input-output relationship of

$$
y(t)=2 x(t)+10
$$

is this system linear? [Carlson and Crilly, 2009, Q2.3-10]

Problem 4. Signal $x(t)=10 \cos \left(2 \pi \times 7 \times 10^{6} \times t\right)$ is transmitted to some destination. The received signal is $y(t)=10 \cos \left(2 \pi \times 7 \times 10^{6} \times t-\pi / 6\right)$.
(a) What is the minimum distance between the source and destination?
(b) What are the other possible distances?
[Carlson and Crilly, 2009, Q2.3-14]

Problem 5 (M2011). Use properties of Fourier transform to evaluate the following integrals. (Do not integrate directly. Recall that $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$.) Clearly state the property or properties that you use.
(a) $\int_{-\infty}^{\infty} \operatorname{sinc}(\sqrt{5} x) d x$
(b) $\int_{-\infty}^{\infty} \operatorname{sinc}(\sqrt{5} x) \operatorname{sinc}(\sqrt{7} x) d x$
(c) (Optional) $\int_{-\infty}^{\infty} e^{-2 \pi f \times 2 j} 2 \operatorname{sinc}(2 \pi f)\left(e^{-2 \pi f \times 5 j} 2 \operatorname{sinc}(2 \pi f)\right)^{*} d f$
(d) (Optional) $\int_{-\infty}^{\infty} \operatorname{sinc}(\pi(x-5)) \operatorname{sinc}\left(\pi\left(x-\frac{7}{2}\right)\right) d x$

[^0]: ${ }^{1}$ Inspired by [Carlson and Crilly, 2009, Q2.2-1 and Q2.2-2].

