EES 351: Principles of Communications
HW 2-Due: September 2, 11:59 PM Solution
Lecturer: Prapun Suksompong, Ph.D.

## Instructions

(a) This assignment has 5 pages.
(b) (1 pt) Two choices for submission:
(i) Online submission via Google Classroom

- PDF only. Paper size should be the same as the posted file.
- Only for those who can directly work on the posted PDF file using devices with pen input.
- No scanned work, photos, or screen capture.
- Your file name should start with your 10-digit student ID: "5565242231 315 HW1.pdf"
(ii) Hardcopy submission: Work and write your answers directly on a hardcopy of the posted file (not on another blank sheet of paper).
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.
(d) $(8 \mathrm{pt})$ Try to solve all problems.
(e) $[$ ENRpr $]=$ Explanation is not required for this problem.
(f) Late submission will be heavily penalized.

Problem 1. In class, we have seen how to use the Euler's formula to show that

$$
\cos ^{2} x=\frac{1}{2}(\cos (2 x)+1) .
$$

For this question, apply similar technique to show that

$$
\begin{aligned}
& \cos A \cos B=\frac{1}{2}(\cos (A+B)+\cos (A-B)) . \\
& \cos A \cos B=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \times \frac{1}{2}\left(e^{j B}+e^{-j B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
& \text { Steps: } \\
& \text { (1) Replace cos and } \sin \\
& \text { with complex exponential } \\
& \text { functions. } \\
& \text { (2) Simplify or rearrange } \\
& \text { the expression } \\
& \text { (3) Convert back to cos and } \sin \\
& =\frac{1}{2}(\cos (A+B)+\cos (A-B))
\end{aligned}
$$

First, we convert the given expressions into complex exponential functions. Then, we use the fact that $e^{j 2 \pi f_{0} t}$ in the time domain corresponds to the delta function at $f=f_{0}$ in the frequency domain
LES 351
WW 2 - Due: September 2, 11:59 PM

Problem 2. Plot (by hand) the Fourier transforms of the following signals
(a) $\cos (\underbrace{20 \pi t)}_{L}=\frac{e^{j A}+e^{-j A}}{2}=\frac{1}{2} e^{j A}+\frac{1}{2} e^{-j A}=\frac{1}{2} e^{j 2 \pi(10) t}+\frac{1}{2} e^{j 2 \pi(-10) t}$. $A=2 \pi(10) t$
So, the plot of its Fourier trons form is


Alternatively, one may simply remember that the Fourier transform of $\cos \left(2 \pi f_{0} t\right)$ is simply delta functions of size $\frac{1}{2}$ at $f_{0}$ and $-f_{0}$.
(b) $\cos (20 \pi t)+\cos (40 \pi t)$

For $\cos (\underbrace{40 \pi t})$, the corresponding frequencies are $\pm 20 \mathrm{~Hz}$.

$$
\begin{aligned}
2 \pi f_{0} t & =40 \pi t \\
f_{0} & =20
\end{aligned}
$$

So, the plot of the Fourier transform of $\cos (20 \pi t)+\cos (40 \pi t)$ is
(c) $(\cos (20 \pi t))^{2}$
$(\cos (\underbrace{20 \pi t}))^{2}=(\cos A)^{2}=\left(\frac{1}{2}\left(e^{j A}+e^{-j A}\right)\right)^{2}=\frac{1}{4}\left(e^{2 j A}+2+e^{-2 j A}\right)$
$\begin{aligned} A & =20 \pi t \\ & =2 \pi(10) t\end{aligned}=\frac{1}{4} e^{j 2 \pi(20) t}+\frac{1}{2} \underbrace{e^{j 2 \pi(0) t}}_{1}+\frac{1}{4} e^{j 2 \pi(-20) t}$

$$
=2 \pi(10) t
$$

So, the plot of its Fourier transform is

(d) $\cos (\underbrace{20 \pi t}_{\sim}) \times \cos (\underbrace{40 \pi t})=\cos (A) \cos (B)=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \frac{1}{2}\left(e^{j B}+e^{-j B}\right)$

$$
\begin{aligned}
A=20 \pi t \\
=2 \pi(10) t
\end{aligned} \quad \begin{aligned}
B=40 \pi t \\
=2 \pi(20) t
\end{aligned} \quad=\frac{1}{4}\left(e^{j(A+B)}+e^{j(-A+B)}+e^{j(A-B)}+e^{j(-A-B)}\right)
$$

So, the plot of its Fourier transform is | $1^{1 / 4}$ | $\uparrow^{1 / 4}$ |
| :---: | :---: |
| -10 | $\uparrow^{1 / 4}$ |$\uparrow^{1 / 4} f$

(e) $(\cos (20 \pi t))^{2} \times \cos (40 \pi t)=(\underbrace{\frac{1}{4} e^{j 2 \pi(20) t}+\frac{1}{2}+\frac{1}{4} e^{j 2 \pi(-20) t}}_{\text {from part (c) }}) \times\left(\frac{1}{2} e^{j 2 \pi(20) t}+\frac{1}{2} e^{j 2 \pi(-20) t}\right)$


| $\uparrow^{1 / 8}$ | $\uparrow^{1 / 4}$ | $\uparrow^{1 / 4}$ | $\uparrow^{1 / 4}$ | $\uparrow^{1 / 8}$ |
| :--- | :--- | :--- | :--- | :--- |$f$

Problem 3. Evaluate the following integrals:
(a) First, recall that $\int_{A} \delta(t) d t=\left\{\begin{array}{ll}1, & 0 \in A, \\ 0, & 0 \notin A .\end{array}\right.$ In particular, $\int_{-\infty}^{\infty} \delta(t) d t=1$.
(i) $\int_{-\infty}^{\infty} 2 \delta(t) d t=2 \int_{-\infty}^{\infty} \delta(t) d t=2 \times 1=2$.
(ii) $\int_{-3}^{2} 4 \delta(t-1) d t$ Consider the function $4 \delta(t-1)$ graphically.



(c)

$$
\text { (i) } \int_{-\infty}^{\infty} \delta(t-2) \underbrace{\sin (\pi t)} d t=\int_{-\infty}^{\infty} g(t) \delta(t-2) d t=g(2)=\left.\sin (\pi t)\right|_{t=2}=\sin (2 \pi)=0
$$


(iii) $\begin{aligned} \int_{-\infty}^{\infty} e^{(x-1)} \cos \left(\frac{\pi}{2}(x-5)\right) \delta(x-3) d x=\int_{-\infty}^{\infty} g(t) \delta(x-3) d x=g(3) & =\left.e^{x-1} \cos \left(\frac{\pi}{2}(x-5)\right)\right|_{\pi=3} \\ & =e^{2} \cos (-\pi)=-e^{2}\end{aligned}$ It takes the role of " $t$ " in our formula.
(d) This part has the delta function in the form $\delta(T-t)$.
we use the "change of variables" technique to evaluate the integral: $\iint_{-\infty}^{\infty} g(t) \delta(T-t) d t=-\int_{\infty}^{\infty} g(T-\tau) \delta(\tau) d \tau$
(i) $\int_{-\infty}^{\infty}\left(t^{3}+4\right) \delta(1-t) d t=t^{3}+\left.4\right|_{t=1}=1^{3}+4=1+4=5$
(ii) $\int_{-\infty}^{\infty} g(2-t) \delta(3-t) d t=\left.g(2-t)\right|_{t=3}=g(2-3)=g(-1)$
$=\iint^{-} g(T-t) \delta(t) d t$
Remark: From $\int_{-\infty}^{\infty} g(t) \delta(T-t) d t=g(T)$, we $g e t \prod_{(g * \delta)(t)}^{\infty} g(\tau) \delta(t-\tau) d \tau-g(t)$ simply by variable renaming $\binom{t \rightarrow \tau)}{T \rightarrow t}$ $=g(T-0)=g(T)$.
(e) $\int_{-2}^{2} \delta(2 t) d t$


Figure 2.1: Problem 4
(a) Carefully sketch the following signals:
(i) $y_{1}(t)=g(-t)$
(ii) $y_{2}(t)=g(t+6)$
(a)
(i) Recall the time inversion (time reversal) operation
$g(-t)$ is the mirrow image of $g(t)$ about the vertical axis.
(ii) Recall the time shifting operation:
$g(t-T)$ represents $g(t)$ time-shitted by $T$.
If $T$ is positive, the shift is to the right (delay).
If $T$ is negative, the shift is to the left (by $|T|$ ).
Here, $y_{2}(t)=g(t+6)=g(t-(-6))$.
So, $y_{2}(t)$ is simply $g(t)$ shifted to the left by 6 time units.
(iii) Recall the time scaling operation:
$g(a t)$ is $g(t)$ compressed in time by the factor $a$.
$L_{\text {for }} a>1$
So, $y_{3}(t)=g(3 t)$ is simply $g(t)$ compressed in time by
(iv) The tricky one would be $g(6-t)$.

There are two ways to think about it
(1)
mirror image
shift to
about the the right by 6 vertical axis
(2) $g(t) \xrightarrow{\text { time shift, } T=-6} g(t+6) \xrightarrow{\text { time inversion }} g(-t+6)$
shift to
the left by 6
(iii) $y_{3}(t)=g(3 t)$
(iv) $y_{4}(t)=g(6-t)$.

(b) Find the "net" area under the graph for each of the signals in the previous part. (Mathematically, this is equivalent to integrating each signal from $-\infty$ to $+\infty$. However, directly calculating and combining positive and negative areas from the plots should be easier.) First, note that, for any constant $m, c$,


Now, for us, $\quad \int_{-\infty}^{\infty} g(t) d t=\underbrace{\left(\frac{1}{2} \times 1 \times \sqrt{2}^{12-6}\right.}_{\substack{\text { area under } \\ \text { the first triangle }}}+\left(\frac{1}{2} \times \frac{1}{2} \times 12\right)^{24-12}=-3+3=0$.
Therefore, $\quad \int_{-\infty}^{\infty} g(m t+c) d t=0$ for any $m, c$.
Note:

|  | $m$ | $c$ |
| :--- | :---: | :---: |
| (i) | -1 | 0 |
| (ii) | 1 | 6 |
| (iii) | 0 | 0 |
| (iv) | -1 | 6 |

