
EES 315: Probability and Random Processes 2020/1

HW 6 — Due: October 22, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Name ID3

Instructions
(a) This assignment has 6 pages.

(b) (1 pt) Two choices for submission:

(i) Online submission via Google Classroom

• PDF only. Paper size should be the same as the posted file.

• Only for those who can directly work on the posted PDF file using devices with pen input.

• No scanned work, photos, or screen capture.

• Your file name should start with your 10-digit student ID: “5565242231 315 HW4.pdf”

(ii) Hardcopy submission: Work and write your answers directly on a hardcopy of the posted file (not on another blank sheet

of paper).

(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.

(d) (8 pt) Try to solve all problems. Write down all the steps that you have done to obtain your answers. You may not get full credit even
when your answer is correct without showing how you get your answer.

(e) Late submission will be heavily penalized.

Problem 1. Series Circuit: The circuit in Figure 6.1 operates only if there is a path of
functional devices from left to right. The probability that each device functions is shown on
the graph. Assume that devices fail independently. What is the probability that the circuit
operates? [Montgomery and Runger, 2010, Ex. 2-32]
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This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the
random experiment.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E1, E2 are independent if and only if for any subset of these
events 

(2-14)P1Ei1 ¨ Ei2 ¨ p ¨ Eik2 � P1Ei12 � P1Ei22 � p � P1Eik2

Ei1, Ei2, p , Eik,
, p , En

Independence
(multiple events)

EXAMPLE 2-32 Series Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let L and R denote the events that the left and right devices
operate, respectively. There is only a path if both operate. The

0.8 0.9

probability the circuit operates is

Practical Interpretation: Notice that the probability that the
circuit operates degrades to approximately 0.5 when all devices
are required to be functional. The probability each device is func-
tional needs to be large for a circuit to operate when many devices
are connected in series.

P1L and R2 � P1L ¨ R2 � P1L2P1R2 � 0.8010.902 � 0.72

EXAMPLE 2-33
Assume that the probability that a wafer contains a large par-
ticle of contamination is 0.01 and that the wafers are inde-
pendent; that is, the probability that a wafer contains a large
particle is not dependent on the characteristics of any of the
other wafers. If 15 wafers are analyzed, what is the probability
that no large particles are found?

Let Ei denote the event that the ith wafer contains no large
particles, Then, The probabilityP1Ei2 � 0.99.i � 1, 2, p , 15.

requested can be represented as From
the independence assumption and Equation 2-14,

� P1E152 � 0.9915 � 0.86
P1E1 ¨ E2 ¨  p ¨ E152 � P1E12 � P1E22 � p

P1E1 ¨ E2 ¨  
p ¨ E152.

EXAMPLE 2-34 Parallel Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom de-
vices operate, respectively. There is a path if at least one device
operates. The probability that the circuit operates is

0.95

0.95

a b

A simple formula for the solution can be derived from the
complements and From the independence assumption,

so

Practical Interpretation: Notice that the probability that the cir-
cuit operates is larger than the probability that either device is
functional. This is an advantage of a parallel architecture. A dis-
advantage is that multiple devices are needed.

P1T or B2 � 1 
 0.052 � 0.9975

P1T¿ and B¿ 2 � P1T¿ 2P1B¿ 2 � 11 
 0.9522 � 0.052

B¿.T¿

P1T or B2 � 1 
 P 3 1T or B2 ¿ 4 � 1 
 P1T¿ and B¿ 2
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Figure 6.1: Circuit for Problem 1
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Problem 2. In an experiment, A, B, C, and D are events with probabilities P (A∪B) = 5
8
,

P (A) = 3
8
, P (C ∩D) = 1

3
, and P (C) = 1

2
. Furthermore, A and B are disjoint, while C and

D are independent.

(a) Find

(i) P (A ∩B)

(ii) P (B)

(iii) P (A ∩Bc)

(iv) P (A ∪Bc)

(b) Are A and B independent?

(c) Find

(i) P (D)

(ii) P (C ∩Dc)

(iii) P (Cc ∩Dc)

(iv) P (C|D)
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(v) P (C ∪D)

(vi) P (C ∪Dc)

(d) Are C and Dc independent?

Problem 3. In this question, each experiment has equiprobable outcomes.

(a) Let Ω = {1, 2, 3, 4}, A1 = {1, 2}, A2 = {1, 3}, A3 = {2, 3}.

(i) Determine whether P (Ai ∩ Aj) = P (Ai)P (Aj) for all i 6= j.

(ii) Check whether P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(iii) Are A1, A2, and A3 independent?

(b) Let Ω = {1, 2, 3, 4, 5, 6}, A1 = {1, 2, 3, 4}, A2 = A3 = {4, 5, 6}.

(i) Check whether P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(ii) Check whether P (Ai ∩ Aj) = P (Ai)P (Aj) for all i 6= j.
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(iii) Are A1, A2, and A3 independent?

Problem 4. A Web ad can be designed from four different colors, three font types, five font
sizes, three images, and five text phrases. A specific design is randomly generated by the
Web server when you visit the site. Let A denote the event that the design color is red and
let B denote the event that the font size is not the smallest one.

(a) Use classical probability to evaluate P (A), P (B) and P (A ∩ B). Show that the two
events A and B are independent by checking whether P (A ∩B) = P (A)P (B).

(b) Using the values of P (A) and P (B) from the previous part and the fact that A |= B,
calculate the following probabilities.

(i) P (A ∪B)

(ii) P (A ∪Bc)
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(iii) P (Ac ∪Bc)

[Montgomery and Runger, 2010, Q2-84]

Problem 5. The circuit in Figure 6.2 operates only if there is a path of functional devices
from left to right. The probability that each device functions is shown on the graph. As-
sume that devices fail independently. What is the probability that the circuit operates?
[Montgomery and Runger, 2010, Ex. 2-34]
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This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the
random experiment.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E1, E2 are independent if and only if for any subset of these
events 

(2-14)P1Ei1 ¨ Ei2 ¨ p ¨ Eik2 � P1Ei12 � P1Ei22 � p � P1Eik2

Ei1, Ei2, p , Eik,
, p , En

Independence
(multiple events)

EXAMPLE 2-32 Series Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let L and R denote the events that the left and right devices
operate, respectively. There is only a path if both operate. The

0.8 0.9

probability the circuit operates is

Practical Interpretation: Notice that the probability that the
circuit operates degrades to approximately 0.5 when all devices
are required to be functional. The probability each device is func-
tional needs to be large for a circuit to operate when many devices
are connected in series.

P1L and R2 � P1L ¨ R2 � P1L2P1R2 � 0.8010.902 � 0.72

EXAMPLE 2-33
Assume that the probability that a wafer contains a large par-
ticle of contamination is 0.01 and that the wafers are inde-
pendent; that is, the probability that a wafer contains a large
particle is not dependent on the characteristics of any of the
other wafers. If 15 wafers are analyzed, what is the probability
that no large particles are found?

Let Ei denote the event that the ith wafer contains no large
particles, Then, The probabilityP1Ei2 � 0.99.i � 1, 2, p , 15.

requested can be represented as From
the independence assumption and Equation 2-14,

� P1E152 � 0.9915 � 0.86
P1E1 ¨ E2 ¨  p ¨ E152 � P1E12 � P1E22 � p

P1E1 ¨ E2 ¨  
p ¨ E152.

EXAMPLE 2-34 Parallel Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom de-
vices operate, respectively. There is a path if at least one device
operates. The probability that the circuit operates is

0.95

0.95

a b

A simple formula for the solution can be derived from the
complements and From the independence assumption,

so

Practical Interpretation: Notice that the probability that the cir-
cuit operates is larger than the probability that either device is
functional. This is an advantage of a parallel architecture. A dis-
advantage is that multiple devices are needed.

P1T or B2 � 1 
 0.052 � 0.9975

P1T¿ and B¿ 2 � P1T¿ 2P1B¿ 2 � 11 
 0.9522 � 0.052

B¿.T¿

P1T or B2 � 1 
 P 3 1T or B2 ¿ 4 � 1 
 P1T¿ and B¿ 2
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Figure 6.2: Circuit for Problem 5

Extra Questions

Here are some optional questions for those who want more practice.
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Problem 6. Show that if A and B are independent events, then so are A and Bc, Ac and
B, and Ac and Bc.

Problem 7. Anne and Betty go fishing. Find the conditional probability that Anne catches
no fish given that at least one of them catches no fish. Assume they catch fish independently
and that each has probability 0 < p < 1 of catching no fish. [Gubner, 2006, Q2.62]

Hint: Let A be the event that Anne catches no fish and B be the event that Betty catches
no fish. Observe that the question asks you to evaluate P (A|(A ∪B)).
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