EES 315: Probability and Random Processes	2020/1
HW 5 - Due: Not Due	

Lecturer: Prapun Suksompong, Ph.D.

Problem 1.

(a) Suppose that $P(A \mid B)=0.4$ and $P(B)=0.5$ Determine the following:
(i) $P(A \cap B)$
(ii) $P\left(A^{c} \cap B\right)$
[Montgomery and Runger, 2010, Q2-105]
(b) Suppose that $P(A \mid B)=0.2, P\left(A \mid B^{c}\right)=0.3$ and $P(B)=0.8$ What is $P(A)$? [Montgomery and Runger, 2010, Q2-106]

Problem 2. Suppose that for the general population, 1 in 5000 people carries the human immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive $(+)$ or negative (-) response. Suppose the test gives the correct answer 99% of the time.
(a) What is $P(-\mid H)$, the conditional probability that a person tests negative given that the person does have the HIV virus?
(b) What is $P(H \mid+)$, the conditional probability that a randomly chosen person has the HIV virus given that the person tests positive?

Problem 3. Due to an Internet configuration error, packets sent from New York to Los Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is routed through El Paso, suppose it has conditional probability $1 / 3$ of being dropped. Given that a packet is not routed through El Paso, suppose it has conditional probability $1 / 4$ of being dropped. [Gubner, 2006, Ex.1.20]
(a) Find the probability that a packet is dropped.

Hint: Use total probability theorem.
(b) Find the conditional probability that a packet is routed through El Paso given that it is not dropped.
Hint: Use Bayes' theorem.

Problem 4. You have two coins, a fair one with probability of heads $\frac{1}{2}$ and an unfair one with probability of heads $\frac{1}{3}$, but otherwise identical. A coin is selected at random and tossed, falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003, Q7.28]

Problem 5. You have three coins in your pocket, two fair ones but the third biased with probability of heads p and tails $1-p$. One coin selected at random drops to the floor, landing heads up. How likely is it that it is one of the fair coins? [Capinski and Zastawniak, 2003, Q7.29]

Extra Questions

Here are some optional questions for those who want more practice.
Problem 6. Someone has rolled a fair dice twice. Suppose he tells you that "one of the rolls turned up a face value of six". What is the probability that the other roll turned up a six as well? [Tijms, 2007, Example 8.1, p. 244]

Hint: Note the followings:

- The answer is not $\frac{1}{6}$.
- Although there is no use of the word "given" or "conditioned on" in this question, the probability we seek is a conditional one. We have an extra piece of information because we know that the event "one of the rolls turned up a face value of six" has occurred.
- The question says "one of the rolls" without telling us which roll (the first or the second) it is referring to.

Problem 7.

(a) Suppose that $P(A \mid B)=1 / 3$ and $P\left(A \mid B^{c}\right)=1 / 4$. Find the range of the possible values for $P(A)$.
(b) Suppose that C_{1}, C_{2}, and C_{3} partition Ω. Furthermore, suppose we know that $P\left(A \mid C_{1}\right)=$ $1 / 3, P\left(A \mid C_{2}\right)=1 / 4$ and $P\left(A \mid C_{3}\right)=1 / 5$. Find the range of the possible values for $P(A)$.

Problem 8. In his book Chances: Risk and Odds in Everyday Life, James Burke says that there is a 72% chance a polygraph test (lie detector test) will catch a person who is, in
fact, lying. Furthermore, there is approximately a 7% chance that the polygraph will falsely accuse someone of lying. [Brase and Brase, 2011, Q4.2.26]
(a) If the polygraph indicated that 30% of the questions were answered with lies, what would you estimate for the actual percentage of lies in the answers?
(b) If the polygraph indicated that 70% of the questions were answered with lies, what would you estimate for the actual percentage of lies?

Problem 9. Software to detect fraud in consumer phone cards tracks the number of metropolitan areas where calls originate each day. It is found that 1% of the legitimate users originate calls from two or more metropolitan areas in a single day. However, 30% of fraudulent users originate calls from two or more metropolitan areas in a single day. The proportion of fraudulent users is 0.01%. If the same user originates calls from two or more metropolitan areas in a single day, what is the probability that the user is fraudulent? [Montgomery and Runger, 2010, Q2-144]

Problem 10. An article in the British Medical Journal ["Comparison of Treatment of Renal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock Wave Lithotripsy" (1986, Vol. 82, pp. 879892)] provided the following discussion of success rates in kidney stone removals. Open surgery (OS) had a success rate of $78 \%(273 / 350)$ while a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350). This newer method looked better, but the results changed when stone diameter was considered. For stones with diameters less than two centimeters, $93 \%(81 / 87)$ of cases of open surgery were successful compared with only $87 \%(234 / 270)$ of cases of PN. For stones greater than or equal to two centimeters, the success rates were $73 \%(192 / 263)$ and $69 \%(55 / 80)$ for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known as Simpson's Paradox) but the hazard still persists today. Explain how open surgery can be better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]

