
EES 315: Probability and Random Processes 2020/1

HW Solution 5 — Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1.

(a) Suppose that P (A|B) = 0.4 and P (B) = 0.5 Determine the following:

(i) P (A ∩B)

(ii) P (Ac ∩B)

[Montgomery and Runger, 2010, Q2-105]

(b) Suppose that P (A|B) = 0.2, P (A|Bc) = 0.3 and P (B) = 0.8 What is P (A)? [Mont-
gomery and Runger, 2010, Q2-106]

Solution :

(a)

(i) By definition, P (A|B) = P (A∩B)
P (B)

. Therefore,

P (A ∩B) = P (A|B)P (B) = 0.4× 0.5 = 0.2.

(ii) P (Ac ∩B) = P (B \ A) = P (B)− P (A ∩B) = 0.5− 0.2 = 0.3.

Alternatively, one can apply the property P (Ac|B) = 1− P (A|B) to get

P (Ac ∩B) = P (Ac|B)P (B) = (1− P (A|B))P (B) = (1− 0.4)× 0.5 = 0.3.

(b) Method 1: By definition, P (A|B) = P (A∩B)
P (B)

. Therefore,

P (A ∩B) = P (A|B)P (B) = 0.2× 0.8 = 0.16.

Next, from P (B) = 0.8, we know that

P (Bc) = 1− P (B) = 1− 0.8 = 0.2.

By definition, P (A|Bc) = P (A∩Bc)
P (Bc)

. Therefore,

P (A ∩Bc) = P (A|Bc)P (Bc) = 0.3× 0.2 = 0.06.

Hence, P (A) = P (A ∩B) + P (A ∩Bc) = 0.16 + 0.16 = 0.22.
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Method 2: By the total probability formula, P (A) = P (A|B)P (B)+P (A|Bc)P (Bc) =
0.2× 0.8 + 0.3× (1− 0.8) = 0.22. .

Method 3: For those who are not seeking a “smart” way to solve this question, we
can try the following:

Note that when we have two events, the sample space is always partitioned into four
events: A ∩ B, Ac ∩ B, A ∩ Bc, and Ac ∩ Bc. (It might be helpful to draw the Venn
diagram here.) Let’s define their probabilities as p1, p2, p3, and p4, respectively. We
are given three conditions which can then be turned into three equations. There is also
one extra condition that p1 + p2 + p3 + p4 = 1. Therefore, we have four equations with
four unknowns. Applying some high-school algebra, we should be able to solve for p1,
p2, p3, and p4. With these, we can calculate probability of any event. For example,
P (A) = p1 + p3.

Problem 2. Suppose that for the general population, 1 in 5000 people carries the human
immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or
negative (-) response. Suppose the test gives the correct answer 99% of the time.

(a) What is P (−|H), the conditional probability that a person tests negative given that
the person does have the HIV virus?

(b) What is P (H|+), the conditional probability that a randomly chosen person has the
HIV virus given that the person tests positive?

Solution :

(a) Because the test is correct 99% of the time,

P (−|H) = P (+|Hc) = 0.01 .

(b) Using Bayes’ formula, P (H|+) = P (+|H)P (H)
P (+)

, where P (+) can be evaluated by the total
probability formula:

P (+) = P (+|H)P (H) + P (+|Hc)P (Hc) = 0.99× 0.0002 + 0.01× 0.9998.

Plugging this back into the Bayes’ formula gives

P (H|+) =
0.99× 0.0002

0.99× 0.0002 + 0.01× 0.9998
≈ 0.0194 .

Thus, even though the test is correct 99% of the time, the probability that a random
person who tests positive actually has HIV is less than 2%. The reason this probability
is so low is that the a priori probability that a person has HIV is very small.

5-2



EES 315 HW Solution 5 — Due: Not Due 2020/1

Problem 3. Due to an Internet configuration error, packets sent from New York to Los
Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is
routed through El Paso, suppose it has conditional probability 1/3 of being dropped. Given
that a packet is not routed through El Paso, suppose it has conditional probability 1/4 of
being dropped. [Gubner, 2006, Ex.1.20]

(a) Find the probability that a packet is dropped.
Hint: Use total probability theorem.

(b) Find the conditional probability that a packet is routed through El Paso given that it
is not dropped.
Hint: Use Bayes’ theorem.

Solution : To solve this problem, we use the notation E = {routed through El Paso}
and D = {packet is dropped}. With this notation, it is easy to interpret the problem as
telling us that

P (D|E) = 1/3, P (D|Ec) = 1/4, and P (E) = 3/4.

(a) By the law of total probability,

P (D) = P (D|E)P (E) + P (D|Ec)P (Ec) = (1/3)(3/4) + (1/4)(1− 3/4)

= 1/4 + 1/16 = 5/16 = 0.3125.

(b) P (E|Dc) = P (E∩Dc)
P (Dc)

= P (Dc|E)P (E)
P (Dc)

= (1−1/3)(3/4)
1−5/16 =

8

11
≈ 0.7273.

Problem 4. You have two coins, a fair one with probability of heads 1
2

and an unfair one
with probability of heads 1

3
, but otherwise identical. A coin is selected at random and tossed,

falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003,
Q7.28]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively.

Because the coin is selected at random, the probability P (F ) of selecting the fair coin is
P (F ) = 1

2
. For fair coin, the conditional probability P (H|F ) of heads is 1

2
For the unfair

coin, P (U) = 1− P (F ) = 1
2

and P (H|U) = 1
3
.

By the Bayes’ formula, the probability that the fair coin has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 1

2
1
2
× 1

2
+ 1

3
× 1

2

=
1
2

1
2

+ 1
3

=
1

1 + 2
3

=
3

5
.
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Problem 5. You have three coins in your pocket, two fair ones but the third biased with
probability of heads p and tails 1−p. One coin selected at random drops to the floor, landing
heads up. How likely is it that it is one of the fair coins? [Capinski and Zastawniak, 2003,
Q7.29]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively. We are given that

P (F ) =
2

3
, P (U) =

1

3
, P (H|F ) =

1

2
, P (H|U) = p.

By Bayes’ theorem, the probability that one of the fair coins has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 2

3
1
2
× 2

3
+ p× 1

3

=
1

1 + p
.

Alternative Solution : Let F1, F2, U and H be the events that “the selected coin is the
first fair coin”, “the selected coin is the second fair coin”, “the selected coin is unfair”, and
“the coin lands heads up”, respectively.

Because the coin is selected at random, the events F1, F2, and U are equally likely:

P (F1) = P (F2) = P (U) =
1

3
.

For fair coins, the conditional probability of heads is 1
2

and for the unfair coin, the conditional
probability of heads is p:

P (H|F1) = P (H|F2) =
1

2
, P (H|U) = p.

The probability that one of the fair coins has been selected given that it lands heads up is
P (F1 ∪ F2|H). Now F1 and F2 are disjoint events. Therefore,

P (F1 ∪ F2|H) = P (F1|H) + P (F2|H).

By Bayes’ theorem,

P (F1 |H ) =
P (H |F1 )P (F1)

P (H)
and P (F2 |H ) =

P (H |F2 )P (F2)

P (H)
.

Therefore,

P (F1 ∪ F2|H) =
P (H |F1 )P (F1)

P (H)
+
P (H |F2 )P (F2)

P (H)
=

P (H |F1 )P (F1) + P (H |F2 )P (F2)

P (H)
.
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Note that the collection of three events F1, F2, and U partitions the sample space.
Therefore, by the total probability theorem,

P (H) = P (H |F1 )P (F1) + P (H |F2 )P (F2) + P (H |U )P (U) .

Plugging the above expression of P (H) into our expression for P (F1 ∪ F2|H) gives

P (F1 ∪ F2|H) =
P (H |F1 )P (F1) + P (H |F2 )P (F2)

P (H |F1 )P (F1) + P (H |F2 )P (F2) + P (H |U )P (U)

=
1
2
× 1

3
+ 1

2
× 1

3
1
2
× 1

3
+ 1

2
× 1

3
+ p× 1

3

=
1

1 + p
.

Extra Questions
Here are some optional questions for those who want more practice.

Problem 6. Someone has rolled a fair dice twice. Suppose he tells you that “one of the
rolls turned up a face value of six”. What is the probability that the other roll turned up a
six as well? [Tijms, 2007, Example 8.1, p. 244]

Hint: Note the followings:

� The answer is not 1
6
.

� Although there is no use of the word “given” or “conditioned on” in this question, the
probability we seek is a conditional one. We have an extra piece of information because
we know that the event “one of the rolls turned up a face value of six” has occurred.

� The question says “one of the rolls” without telling us which roll (the first or the
second) it is referring to.

Solution : Let the sample space be the set {(i, j)|i, j = 1, . . . , 6}, where i and j denote
the outcomes of the first and second rolls, respectively. They are all equally likely; so each
has probability of 1/36. The event of two sixes is given by A = {(6, 6)} and the event
of at least one six is given by B = {(1, 6), . . . , (5, 6), (6, 6), (6, 5), . . . , (6, 1)}. Applying the
definition of conditional probability gives

P (A|B) = P (A ∩B)/P (B) =
1/36

11/36
.

Hence the desired probability is 1/11 .

Problem 7.

(a) Suppose that P (A|B) = 1/3 and P (A|Bc) = 1/4. Find the range of the possible values
for P (A).
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(b) Suppose that C1, C2, and C3 partition Ω. Furthermore, suppose we know that P (A|C1) =
1/3, P (A|C2) = 1/4 and P (A|C3) = 1/5. Find the range of the possible values for
P (A).

Solution : First recall the total probability theorem: Suppose we have a collection of
events B1, B2, . . . , Bn which partitions Ω. Then,

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·P (A ∩Bn)

= P (A |B1 )P (B1) + P (A |B2 )P (B2) + · · ·P (A |Bn )P (Bn)

(a) Note that B and Bc partition Ω. So, we can apply the total probability theorem:

P (A) = P (A |B )P (B) + P (A |Bc )P (Bc) =
1

3
P (B) +

1

4
(1− P (B)) .

You may check that, by varying the value of P (B) from 0 to 1, we can get the value
of P (A) to be any number in the range

[
1
4
, 1
3

]
. Technically, we can not use P (B) = 0

because that would make P (A|B) not well-defined. Similarly, we can not use P (B) =
1 because that would mean P (Bc) = 0 and hence make P (A|Bc) not well-defined.

Therfore, the range of P (A) is

(
1

4
,
1

3

)
.

Note that larger value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) <

1

3
P (B) +

1

3
(1− P (B)) =

1

3
.

Similarly, smaller value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) >

1

4
P (B) +

1

3
(1− P (B)) =

1

4
.

(b) Again, we apply the total probability theorem:

P (A) = P (A |C1 )P (C1) + P (A |C2 )P (C2) + P (A |C3 )P (C3)

=
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) .

Because C1, C2, and C3 partition Ω, we know that P (C1) + P (C2) + P (C3) = 1. Now,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) <

1

3
P (C1) +

1

3
P (C2) +

1

3
P (C3) =

1

3
.

Similarly,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) >

1

5
P (C1) +

1

5
P (C2) +

1

5
P (C3) =

1

5
.
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Therefore, P (A) must be inside
(
1
5
, 1
3

)
.

You may check that any value of P (A) in the range

(
1

5
,
1

3

)
can be obtained by first

setting the value of P (C2) to be close to 0 and varying the value of P (C1) from 0 to 1.

Problem 8. In his book Chances: Risk and Odds in Everyday Life, James Burke says that
there is a 72% chance a polygraph test (lie detector test) will catch a person who is, in
fact, lying. Furthermore, there is approximately a 7% chance that the polygraph will falsely
accuse someone of lying. [Brase and Brase, 2011, Q4.2.26]

(a) If the polygraph indicated that 30% of the questions were answered with lies, what
would you estimate for the actual percentage of lies in the answers?

(b) If the polygraph indicated that 70% of the questions were answered with lies, what
would you estimate for the actual percentage of lies?

Solution : Let AT and AL be the events that “the person actually answers the truth”
and “the person actually answers with lie”, respectively. Also, let PT and PL be the events
that “the polygraph indicates that the answer is the truth” and “the polygraph indicates
that the answer is a lie”, respectively.

We know, from the provided information, that P (PL|AL) = 0.72 and that P (PL|AT ) =
0.07.

Applying the total probability theorem, we have

P (PL) = P (PL|AL)P (AL) + P (PL|AT )P (AT )

= P (PL|AL)P (AL) + P (PL|AT )(1− P (AL)).

Solving for P (AL), we have

P (AL) =
P (PL)− P (PL |AT )

P (PL |AL)− P (PL |AT )
=

P (PL)− 0.07

0.72− 0.07
=

P (PL)− 0.07

0.65
.

(a) Plugging in P (PL) = 0.3, we have P (AL) = 0.3538 .

(b) Plugging in P (PL) = 0.7, we have P (AL) = 0.9692 .

Problem 9. Software to detect fraud in consumer phone cards tracks the number of metropoli-
tan areas where calls originate each day. It is found that 1% of the legitimate users originate
calls from two or more metropolitan areas in a single day. However, 30% of fraudulent users
originate calls from two or more metropolitan areas in a single day. The proportion of fraud-
ulent users is 0.01%. If the same user originates calls from two or more metropolitan areas in
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a single day, what is the probability that the user is fraudulent? [Montgomery and Runger,
2010, Q2-144]

Solution : Let F denote the event of fraudulent user and let M denote the event of
originating calls from multiple (two or more) metropolitan areas in a day. Then,

P (F |M ) =
P (M |F )P (F )

P (M |F )P (F ) + P (M |F c)P (F c)
=

1

1 + P (M |F c)
P (M |F )

× P (F c)
P (F )

=
1

1 +
1

100
30
100

×
9999
104
1

104

=
1

1 + 9999
30

=
30

30 + 9999
=

30

10029
≈ 0.0030 .

Problem 10. An article in the British Medical Journal [“Comparison of Treatment of Re-
nal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879892)] provided the following discussion of success
rates in kidney stone removals. Open surgery (OS) had a success rate of 78% (273/350) while
a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350).
This newer method looked better, but the results changed when stone diameter was con-
sidered. For stones with diameters less than two centimeters, 93% (81/87) of cases of open
surgery were successful compared with only 87% (234/270) of cases of PN. For stones greater
than or equal to two centimeters, the success rates were 73% (192/263) and 69% (55/80)
for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less
successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known
as Simpson’s Paradox) but the hazard still persists today. Explain how open surgery can be
better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]

Solution : First, let’s recall the total probability theorem:

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A |B )P (B) + P (A |Bc )P (Bc) .

We can see that P (A) does not depend only on P (A|B) and P (A |Bc ). It also depends on
P (B) and P (Bc). In the extreme case, we may imagine the case with P (B) = 1 in which
P (A) = P (A|B). At another extreme, we may imagine the case with P (B) = 0 in which
P (A) = P (A|Bc). Therefore, depending on the value of P (B), the value of P (A) can be
anywhere between P (A|B) and P (A|Bc).

Now, let’s consider events A1, B1, A2, and B2. Let P (A1|B1) = 0.93 and P (A1|Bc
1) =

0.73. Therefore, P (A1) ∈ [0.73, 0.93]. On the other hand, let P (A2|B2) = 0.87 and
P (A2|Bc

2) = 0.69. Therefore, P (A2) ∈ [0.69, 0.87]. With small value of P (B1), the value of
P (A1) can be 0.78 which is closer to its lower end of the bound. With large value of P (B2),
the value of P (A2) can be 0.83 which is closer to its upper end of the bound. Therefore,
even though P (A1|B1) > P (A2|B2) = 0.87 and P (A1|Bc

1) > P (A2|Bc
2), it is possible that

P (A1) < P (A2).
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In the context of the paradox under consideration, note that the success rate of PN with
small stones (87%) is higher than the success rate of OS with large stones (73%). Therefore,
by having a lot of large stone cases to be tested under OS and also have a lot of small stone
cases to be tested under PN, we can create a situation where the overall success rate of PN
comes out to be better then the success rate of OS. This is exactly what happened in the
study as shown in Table 5.1.

Applied Statistics and Probability for Engineers, 5th edition 15 January 2010 

2-19 

 P(R)= P(R|N)P(N) + P(R|A)P(A) + P(R|W)P(W) 
        = (0.02)(0.25) + (0.03) (0.6) + (0.06)(0.15) 
        = 0.032 
 
2-110. Let A denote the event that a respondent is a college graduate and let B denote the event that an individual votes for 

Bush.  
P(B) = P(A)P(B|A) + P(A’)P(B|A’) = (0.38 × 0.52) + (0.62 × 0.5) = 0.0613 

 
2-111. a) (0.88)(0.27) = 0.2376 

b)  (0.12)(0.13+0.52) = 0.0.078 
 

2-112.      a)P = 0.13×0.73=0.0949 
b)P = 0.87× (0.27+0.17)=0.3828 
 

2-113. Let A and B denote the event that the first and second part selected has excessive shrinkage, respectively. 
 a) P(B)= P( B A )P(A) + P(B A ')P(A') 
             = (4/24)(5/25) + (5/24)(20/25) = 0.20 
 b) Let C denote the event that the third part selected has excessive shrinkage. 
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2-114. Let A and B denote the events that the first and second chips selected are defective, respectively.  
 a) P(B) = P(B|A)P(A) + P(B|A')P(A') = (19/99)(20/100) + (20/99)(80/100) = 0.2 

 b) Let C denote the event that the third chip selected is defective. 

  

00705.0
100
20

99
19

98
18

)()()()()()(

=

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

∩=∩∩=∩∩ APABPBACPBAPBACPCBAP

 

2-115. 
 

Open surgery      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 192 71 263 75% 73% 
small stone 81 6 87 25% 93% 

overall summary 273 77 350 100% 78% 
      

PN      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 55 25 80 23% 69% 
small stone 234 36 270 77% 87% 

overall summary 289 61 350 100% 83% 
 

The overall success rate depends on the success rates for each stone size group, but also the probability of the groups. It 
is the weighted average of the group success rate weighted by the group size as follows 

P(overall success) = P(success| large stone)P(large stone)) + P(success| small stone)P(small stone). 
For open surgery, the dominant group (large stone) has a smaller success rate while for PN, the dominant group (small 
stone) has a larger success rate. 

 
2-116. P(A) = 112/204 = 0.5490, P(B) = 92/204 = 0.4510 

Table 5.1: Success rates in kidney stone removals.
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