
EES 315: Probability and Random Processes 2020/1

HW Solution 3 — Due: September 16, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. (Classical Probability and Combinatorics) A bin of 50 parts contains
five that are defective. A sample of two parts is selected at random, without replacement.
Determine the probability that both parts in the sample are defective. [Montgomery and
Runger, 2010, Q2-49]

Solution : The number of ways to select two parts from 50 is
(
50
2

)
and the number of

ways to select two defective parts from the 5 defective ones is
(
5
2

)
Therefore the probability

is (
5
2

)(
50
2

) =
2

245
= 0.0082 .

Alternatively, if the two parts in the sample are selected one by one, then we may also
consider their ordering as well. In such case, we use the formula for “ordered sampling
without replacement” instead of “unordered sampling without replacement”:

(5)2
(50)2

=
5× 4

50× 49
=

2

245
= 0.0082 .

Problem 2. (Classical Probability and Combinatorics) We all know that the chance
of a head (H) or tail (T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin
is tossed ten times, then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).
Solution : There are 210 possible outcomes for ten coin tosses. (For each toss, there is

two possibilities, H or T). Only
(
10
5

)
among these outcomes have exactly heads and five tails.

(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is(

10
5

)
210
≈ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.

Problem 3. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.1)
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(a) What is the coefficient of x12y13 in the expansion of (x+ y)25?

(b) What is the coefficient of x12y13 in the expansion of (2x− 3y)25?

(c) Use the binomial theorem (3.5) to evaluate
n∑

k=0

(−1)k
(
n
k

)
.

Solution :

(a) The coefficient of xryn−r is
(
n
r

)
. Here, n = 25 and r = 12. So, the coefficient is(

25
12

)
= 5, 200, 300 .

(b) We start from the expansion of (a+ b)n. Then we set a = 2x and b = −3y:

(a+ b)n =
n∑

r=0

(
n

r

)
arbn−r =

n∑
r=0

(
n

r

)
(2x)r(−3y)n−r = .

n∑
r=0

(
n

r

)
2r(−3)n−rxryn−r.

(3.2)
Therefore, the coefficient of xryn−r is

(
n
r

)
2r(−3)n−r. Here, n = 25 and r = 12. So, the

coefficient is
(
25
12

)
212(−3)13 = − 25!

12!13!
212313 = −33959763545702400 .

(c) From (3.5), set x = −1 and y = 1, then we have
n∑

k=0

(−1)k
(
n
k

)
= (−1 + 1)n = 0 .

Extra Questions
Here are some optional questions for those who want more practice.

Problem 4. An Even Split at Coin Tossing : Let pn be the probability of getting
exactly n heads (and hence exactly n tails) when a fair coin is tossed 2n times.

(a) Find pn.

(b) Sometimes, to work theoretically with large factorials, we use Stirling’s Formula:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+

1
2) ln(n

e ). (3.3)

Approximate pn using Stirling’s Formula.

(c) Find lim
n→∞

pn.

Solution : Note that we have worked on a particular case (n = 5) of this problem earlier.

(a) Use the same solution as Problem 2; change 5 to n and 10 to 2n, we have

pn =

(
2n
n

)
22n

.
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(b) By Stirling’s Formula, we have(
2n

n

)
=

(2n)!

n!n!
≈
√

2π2n(2n)2ne−2n(√
2πnnne−n

)2 =
4n

√
πn

.

Hence,

pn ≈
1√
πn

. (3.4)

[Mosteller, Fifty Challenging Problems in Probability with Solutions, 1987, Problem 18]

See Figure 3.1 for comparison of pn and its approximation via Stirling’s formula.
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Figure 3.1: Comparison of pn and its approximation via Stirling’s formula

(c) From (3.4), lim
n→∞

pn = 0 . A more rigorous proof of this limit would use the bounds

4n

√
4n
≤
(

2n

n

)
≤ 4n

√
3n+ 1

.

Problem 5. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.5)

(a) Use the binomial theorem (3.5) to simplify the following sums

3-3



EES 315 HW Solution 3 — Due: September 16, 11:59 PM 2020/1

(i)
n∑

r=0
r even

(
n
r

)
xr(1− x)n−r

(ii)
n∑

r=0
r odd

(
n
r

)
xr(1− x)n−r

(b) If we differentiate (3.5) with respect to x and then multiply by x, we have

n∑
r=0

r

(
n

r

)
xryn−r = nx(x+ y)n−1.

Use similar technique to simplify the sum
∑n

r=0 r
2
(
n
r

)
xryn−r.

Solution :

(a) To deal with the sum involving only the even terms (or only the odd terms), we first
use (3.5) to expand (x+y)n and (x+(−y))n. When we add the expanded results, only
the even terms in the sum are left. Similarly, when we find the difference between the
two expanded results, only the the odd terms are left. More specifically,

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
((x+ y)n + (y − x)n) , and

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
((x+ y)n − (y − x)n) .

If x+ y = 1, then

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
(1 + (1− 2x)n) , and (3.6a)

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
(1− (1− 2x)n) . (3.6b)

(b)
∑n

r=0 r
2
(
n
r

)
xryn−r = nx

(
x(n− 1)(x+ y)n−2 + (x+ y)n−1

)
.
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