EES 315: Probability and Random Processes 2020/1
 HW Solution 10 - Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1 (Yates and Goodman, 2005, Q3.2.1). The random variable X has probability density function

$$
f_{X}(x)= \begin{cases}c x & 0 \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Use the pdf to find the following quantities.
(a) the unknown constant c
(b) $P[0 \leq X \leq 1]$
(c) $P[-1 / 2 \leq X \leq 1 / 2]$.

Solution:

(a) Recall that any pdf should integrate to 1 . Here,

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{2} c x d x=\left.c \frac{x^{2}}{2}\right|_{0} ^{2}=2 c
$$

Equating the expression above to 1 , we get $c=\frac{1}{2}$.
(b) $P[0 \leq X \leq 1]=\int_{0}^{1} f_{X}(x) d x=\int_{0}^{1} \frac{1}{2} x d x=\left.\frac{1}{2} \frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{4}$.
(c) $P\left[-\frac{1}{2} \leq X \leq \frac{1}{2}\right]=\int_{-1 / 2}^{1 / 2} f_{X}(x) d x$. Now, $f_{X}(x)=0$ on the interval $\left[-\frac{1}{2}, 0\right)$. Therefore, we don't have to integrate over that interval and

$$
P\left[-\frac{1}{2} \leq X \leq \frac{1}{2}\right]=\int_{0}^{1 / 2} f_{X}(x) d x=\int_{0}^{1 / 2} \frac{1}{2} x d x=\left.\frac{1}{2} \frac{x^{2}}{2}\right|_{0} ^{1 / 2}=\frac{1}{16}
$$

Problem 2 (Yates and Goodman, 2005, Q3.3.4). The pdf of random variable Y is

$$
f_{Y}(y)= \begin{cases}y / 2 & 0 \leq y<2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathbb{E}[Y]$.
(b) Find $\operatorname{Var} Y$.

Solution:

(a) Recall that, for continuous random variable Y,

$$
\mathbb{E} Y=\int_{-\infty}^{\infty} y f_{Y}(y) d y
$$

Note that when y is outside of the interval $[0,2), f_{Y}(y)=0$ and hence does not affect the integration. We only need to integrate over $[0,2)$ in which $f_{Y}(y)=\frac{y}{2}$. Therefore,

$$
\mathbb{E} Y=\int_{0}^{2} y\left(\frac{y}{2}\right) d y=\int_{0}^{2} \frac{y^{2}}{2} d y=\left.\frac{y^{3}}{2 \times 3}\right|_{0} ^{2}=\frac{4}{3}
$$

(b) The variance of any random variable Y (discrete or continuous) can be found from

$$
\operatorname{Var} Y=\mathbb{E}\left[Y^{2}\right]-(\mathbb{E} Y)^{2}
$$

We have already calculate $\mathbb{E} Y$ in the previous part. So, now we need to calculate $\mathbb{E}\left[Y^{2}\right]$. Recall that, for continuous random variable,

$$
\mathbb{E}[g(Y)]=\int_{-\infty}^{\infty} g(y) f_{Y}(y) d y
$$

Here, $g(y)=y^{2}$. Therefore,

$$
\mathbb{E}\left[Y^{2}\right]=\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y
$$

Again, in the integration, we can ignore the y whose $f_{Y}(y)=0$:

$$
\mathbb{E}\left[Y^{2}\right]=\int_{0}^{2} y^{2}\left(\frac{y}{2}\right) d y=\int_{0}^{2} \frac{y^{3}}{2} d y=\left.\frac{y^{4}}{2 \times 4}\right|_{0} ^{2}=2 .
$$

Plugging this into the variance formula gives

$$
\operatorname{Var} Y=\mathbb{E}\left[Y^{2}\right]-(\mathbb{E} Y)^{2}=2-\left(\frac{4}{3}\right)^{2}=2-\frac{16}{9}=\frac{2}{9}
$$

Problem 3. The pdf of random variable V is

$$
f_{V}(v)= \begin{cases}\frac{v+5}{72}, & -5<v<7 \\ 0, & \text { otherwise }\end{cases}
$$

(a) What is $\mathbb{E}[V]$?
(b) What is $\operatorname{Var}[V]$?
(c) What is $\mathbb{E}\left[V^{3}\right]$?

Solution:

(a) $\mathbb{E}[V]=\int_{-\infty}^{\infty} v f_{V}(v) d v=\int_{-5}^{7} v\left(\frac{v+5}{72}\right) d v=\frac{1}{72} \int_{-5}^{7} v^{2}+5 v d v=3$.
(b) $\mathbb{E}\left[V^{2}\right]=\int_{-\infty}^{\infty} v^{2} f_{V}(v) d v=\int_{-5}^{7} v^{2}\left(\frac{v+5}{72}\right) d v=17$.

Therefore, Var $V=\mathbb{E}\left[V^{2}\right]-(\mathbb{E}[V])^{2}=17-9=8$.
(c) $\mathbb{E}\left[V^{3}\right]=\int_{-\infty}^{\infty} v^{3} f_{V}(v) d v=\int_{-5}^{7} v^{3}\left(\frac{v+5}{72}\right) d v=\frac{431}{5}=86.2$.

Problem 4 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the interval $(-5,5)$.
(a) What is its pdf $f_{X}(x)$?
(b) What is $\mathbb{E}[X]$?
(c) What is $\mathbb{E}\left[X^{5}\right]$?
(d) What is $\mathbb{E}\left[e^{X}\right]$?

Solution: For a uniform random variable X on the interval (a, b), we know that

$$
f_{X}(x)= \begin{cases}0, & x<a \text { or } x>b, \\ \frac{1}{b-a}, & a \leq x \leq b\end{cases}
$$

In this problem, we have $a=-5$ and $b=5$.
(a) $f_{X}(x)= \begin{cases}0, & x<-5 \text { or } x>5, \\ \frac{1}{10}, & -5 \leq x \leq 5\end{cases}$
(b) $\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{-5}^{5} x \times \frac{1}{10} d x=\left.\frac{1}{10} \frac{x^{2}}{2}\right|_{-5} ^{5}=\frac{1}{20}\left(5^{2}-(-5)^{2}\right)=0$. In general,

$$
\mathbb{E} X=\int_{a}^{b} x \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x d x=\left.\frac{1}{b-a} \frac{x^{2}}{2}\right|_{a} ^{b}=\frac{1}{b-a} \frac{b^{2}-a^{2}}{2}=\frac{a+b}{2}
$$

With $a=-5$ and $b=5$, we have $\mathbb{E} X=0$.
(c) $\mathbb{E}\left[X^{5}\right]=\int_{-\infty}^{\infty} x^{5} f_{X}(x) d x=\int_{-5}^{5} x^{5} \times \frac{1}{10} d x=\left.\frac{1}{10} \frac{x^{6}}{6}\right|_{-5} ^{5}=\frac{1}{60}\left(5^{6}-(-5)^{6}\right)=0$.

In general,

$$
\mathbb{E}\left[X^{5}\right]=\int_{a}^{b} x^{5} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x^{5} d x=\left.\frac{1}{b-a} \frac{x^{6}}{6}\right|_{a} ^{b}=\frac{1}{b-a} \frac{b^{6}-a^{6}}{6} .
$$

With $a=-5$ and $b=5$, we have $\mathbb{E}\left[X^{5}\right]=0$.
(d) In general,

$$
\mathbb{E}\left[e^{X}\right]=\int_{a}^{b} e^{x} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} e^{x} d x=\left.\frac{1}{b-a} e^{x}\right|_{a} ^{b}=\frac{e^{b}-e^{a}}{b-a}
$$

With $a=-5$ and $b=5$, we have $\mathbb{E}\left[e^{X}\right]=\frac{e^{5}-e^{-5}}{10} \approx 14.84$.
Problem 5 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the interval ($0,2 \pi$).
(a) Consider another random variable X defined by

$$
X=5 \cos (7 t+\Theta)
$$

where t is some constant. Find $\mathbb{E}[X]$.
(b) Consider another random variable Y defined by

$$
Y=5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)
$$

where t_{1} and t_{2} are some constants. Find $\mathbb{E}[Y]$.

Solution: First, because Θ is a uniform random variable on the interval ($0,2 \pi$), we know that $f_{\Theta}(\theta)=\frac{1}{2 \pi} 1_{(0,2 \pi)}(t)$. Therefore, for "any" function g, we have

$$
\mathbb{E}[g(\Theta)]=\int_{-\infty}^{\infty} g(\theta) f_{\Theta}(\theta) d \theta
$$

(a) X is a function of $\Theta . \mathbb{E}[X]=5 \mathbb{E}[\cos (7 t+\Theta)]=5 \int_{0}^{2 \pi} \frac{1}{2 \pi} \cos (7 t+\theta) d \theta$. Now, we know that integration over a cycle of a sinusoid gives 0 . So, $\mathbb{E}[X]=0$.
(b) Y is another function of Θ.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)\right]=\int_{0}^{2 \pi} \frac{1}{2 \pi} 5 \cos \left(7 t_{1}+\theta\right) \times 5 \cos \left(7 t_{2}+\theta\right) d \theta \\
& =\frac{25}{2 \pi} \int_{0}^{2 \pi} \cos \left(7 t_{1}+\theta\right) \times \cos \left(7 t_{2}+\theta\right) d \theta
\end{aligned}
$$

Recal ${ }^{1}$ the cosine identity

$$
\cos (a) \times \cos (b)=\frac{1}{2}(\cos (a+b)+\cos (a-b)) .
$$

Therefore,

$$
\begin{aligned}
\mathbb{E} Y & =\frac{25}{4 \pi} \int_{0}^{2 \pi} \cos \left(7 t_{1}+7 t_{2}+2 \theta\right)+\cos \left(7\left(t_{1}-t_{2}\right)\right) d \theta \\
& =\frac{25}{4 \pi}\left(\int_{0}^{2 \pi} \cos \left(7 t_{1}+7 t_{2}+2 \theta\right) d \theta+\int_{0}^{2 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) d \theta\right)
\end{aligned}
$$

The first integral gives 0 because it is an integration over two period of a sinusoid. The integrand in the second integral is a constant. So,

$$
\mathbb{E} Y=\frac{25}{4 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) \int_{0}^{2 \pi} d \theta=\frac{25}{4 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) 2 \pi=\frac{25}{2} \cos \left(7\left(t_{1}-t_{2}\right)\right) .
$$

[^0]Problem 6. Suppose that the time to failure (in hours) of fans in a personal computer can be modeled by an exponential distribution with $\lambda=0.0003$.
(a) What proportion of the fans will last at least 10,000 hours?
(b) What proportion of the fans will last at most 7000 hours?
[Montgomery and Runger, 2010, Q4-97]
Solution: Let T be the time to failure (in hours). We are given that $T \sim \mathcal{E}(\lambda)$ where $\lambda=3 \times 10^{-4}$. Therefore,

$$
f_{T}(t)= \begin{cases}\lambda e^{-\lambda t}, & t>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Here, we want to find $P\left[T>10^{4}\right]$.

We shall first provide the general formula for the $\operatorname{ccdf} P[T>t]$ when $t>0$:

$$
\begin{equation*}
P[T>t]=\int_{t}^{\infty} f_{T}(\tau) d \tau=\int_{t}^{\infty} \lambda e^{-\lambda \tau} d \tau=-\left.e^{-\lambda \tau}\right|_{t} ^{\infty}=e^{-\lambda t} \tag{10.1}
\end{equation*}
$$

Therefore,

$$
P\left[T>10^{4}\right]=e^{-3 \times 10^{-4} \times 10^{4}}=e^{-3} \approx 0.0498
$$

(b) We start with $P[T \leq 7000]=1-P[T>7000]$. Next, we apply (10.1) to get

$$
P[T \leq 7000]=1-P[T>7000]=1-e^{-3 \times 10^{-4} \times 7000}=1-e^{-2.1} \approx 0.8775
$$

Problem 7. Let a continuous random variable X denote the current measured in a thin copper wire in milliamperes. Assume that the probability density function of X is

$$
f_{X}(x)= \begin{cases}5, & 4.9 \leq x \leq 5.1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the probability that a current measurement is less than 5 milliamperes.
(b) Find the expected value of X.
(c) Find the variance and the standard deviation of X.
(d) Find the expected value of power when the resistance is 100 ohms?

Solution:

(a) $P[X<5]=\int_{-\infty}^{5} f_{X}(x) d x=\int_{-\infty}^{0} \underbrace{f_{X}(x)}_{0} d x+\int_{0}^{5} \underbrace{f_{X}(x)}_{5} d x=0+\left.5 x\right|_{x=4.9} ^{5}=0.5$.
(b) $\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{-\infty}^{4.9} x \underbrace{f_{X}(x)}_{0} d x+\int_{4.9}^{5.1} x \underbrace{f_{X}(x)}_{5} d x+\int_{5.1}^{x} x \underbrace{f_{X}(x)}_{0} d x=0+\left.5 \frac{x^{2}}{2}\right|_{x=4.9} ^{5.1}+$ $0=5 \mathrm{~mA}$.
Alternatively, for $X \sim \mathcal{U}(a, b)$, we have $\mathbb{E} X=\frac{a+b}{2}=\frac{4.9+5.1}{2}=5$.
(c) $\operatorname{Var} X=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}$. From the previous part, we know that $\mathbb{E} X=5$. SO, to find $\operatorname{Var} X$, we need to find $\mathbb{E}\left[X^{2}\right]: \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{-\infty}^{4.9} x^{2} \underbrace{f_{X}(x)}_{0} d x+$ $\int_{4.9}^{5.1} x^{2} \underbrace{f_{X}(x)}_{5} d x+\int_{5.1}^{x} x^{2} \underbrace{f_{X}(x)}_{0} d x=0+\left.5 \frac{x^{3}}{3}\right|_{x=4.9} ^{5.1}+0=25+\frac{1}{300}$.
Therefore, $\operatorname{Var} X=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}=\left(25+\frac{1}{300}\right)=\frac{1}{300} \approx 0.0033(\mathrm{~mA})^{2}$ and $\sigma_{X}=\sqrt{\operatorname{Var} X}=\frac{1}{10 \sqrt{3}} \approx 0.0577 \mathrm{~mA}$.
Alternatively, for $X \sim \mathcal{U}(a, b)$, we have $\operatorname{Var} X=\frac{(b-a)^{2}}{12}=\frac{(5.1-4.9)^{2}}{12}=\frac{1}{300}$.
(d) Recall that $P=I \times V=I^{2} r$. Here, $I=X$. Therefore, $P=X^{2} r$ and $\mathbb{E} P=\mathbb{E}\left[X^{2} r\right]=$ $r \mathbb{E}\left[X^{2}\right]=100 \times\left(25+\frac{1}{300}\right)=2500+\frac{1}{3} \approx 2.50033 \times 10^{3}\left[(\mathrm{~mA})^{2} \Omega\right]$. Factoring out m^{2}, we have $\mathbb{E} P \approx 2.50033 \mathrm{~mW}$. $\left(\left[\mathrm{A}^{2} \Omega\right]=[\mathrm{W}].\right)$
Problem 8. Let X be a uniform random variable on the interval $[0,1]$. Set

$$
A=\left[0, \frac{1}{2}\right), \quad B=\left[0, \frac{1}{4}\right) \cup\left[\frac{1}{2}, \frac{3}{4}\right), \quad \text { and } C=\left[0, \frac{1}{8}\right) \cup\left[\frac{1}{4}, \frac{3}{8}\right) \cup\left[\frac{1}{2}, \frac{5}{8}\right) \cup\left[\frac{3}{4}, \frac{7}{8}\right) .
$$

Are the events $[X \in A],[X \in B]$, and $[X \in C]$ independent?
Solution: Note that

$$
\begin{aligned}
& P[X \in A]=\int_{0}^{\frac{1}{2}} d x=\frac{1}{2} \\
& P[X \in B]=\int_{0}^{\frac{1}{4}} d x+\int_{\frac{1}{2}}^{\frac{3}{4}} d x=\frac{1}{2}, \text { and } \\
& P[X \in C]=\int_{0}^{\frac{1}{8}} d x+\int_{\frac{1}{4}}^{\frac{3}{8}} d x+\int_{\frac{1}{2}}^{\frac{5}{8}} d x+\int_{\frac{3}{4}}^{\frac{7}{8}} d x=\frac{1}{2} .
\end{aligned}
$$

Now, for pairs of events, we have

$$
\begin{align*}
& P([X \in A] \cap[X \in B])=\int_{0}^{\frac{1}{4}} d x=\frac{1}{4}=P[X \in A] \times P[X \in B], \tag{10.2}\\
& P([X \in A] \cap[X \in C])=\int_{0}^{\frac{1}{8}} d x+\int_{\frac{1}{4}}^{\frac{3}{8}} d x=\frac{1}{4}=P[X \in A] \times P[X \in C], \text { and } \tag{10.3}\\
& P([X \in B] \cap[X \in C])=\int_{0}^{\frac{1}{8}} d x+\int_{\frac{1}{2}}^{\frac{5}{8}} d x=\frac{1}{4}=P[X \in B] \times P[X \in C] . \tag{10.4}
\end{align*}
$$

Finally,

$$
\begin{equation*}
P([X \in A] \cap[X \in B] \cap[X \in C])=\int_{0}^{\frac{1}{8}} d x=\frac{1}{8}=P[X \in A] P[X \in B] P[X \in C] . \tag{10.5}
\end{equation*}
$$

From (10.2), (10.3), (10.4) and (10.5), we can conclude that the events $[X \in A],[X \in B]$, and $[X \in C]$ are independent.

[^0]: ${ }^{1}$ This identity could be derived easily via the Euler's identity:

 $$
 \begin{aligned}
 \cos (a) \times \cos (b) & =\frac{e^{j a}+e^{-j a}}{2} \times \frac{e^{j b}+e^{-j b}}{2}=\frac{1}{4}\left(e^{j a} e^{j b}+e^{-j a} e^{j b}+e^{j a} e^{-j b}+e^{-j a} e^{-j b}\right) \\
 & =\frac{1}{2}\left(\frac{e^{j a} e^{j b}+e^{-j a} e^{-j b}}{2}+\frac{e^{-j a} e^{j b}+e^{j a} e^{-j b}}{2}\right) \\
 & =\frac{1}{2}(\cos (a+b)+\cos (a-b))
 \end{aligned}
 $$

