\qquad
\qquad

EES 315: Probability and Random Processes 2020/1
 HW 1 - Due: September 2, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 2 pages.
(b) (1 pt) Two choices for submission:
(i) Online submission via Google Classroom

- PDF only. Paper size should be the same as the posted file.
- Only for those who can directly work on the posted PDF file using devices with pen input.
- No scanned work, photos, or screen capture.
- Your file name should start with your 10-digit student ID: "5565242231 315 HW1.pdf"
(ii) Hardcopy submission: Work and write your answers directly on a hardcopy of the posted file (not on another blank sheet of paper).
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.
(d) (8 pt) Try to solve all problems.
(e) $[$ ENRpr $]=$ Explanation is not required for this problem.
(f) Late submission will be heavily penalized.

Problem 1. (Set Theory) [ENRpr]

(a) In the Venn diagrams below,

shade the region that corresponds to the following events:
(i) A^{c}
(ii) $A \cap B$
(iii) $(A \cap B) \cup C$
(iv) $(B \cup C)^{c}$
(v) $(A \cap B)^{c} \cup C$
[Montgomery and Runger, 2010, Q2-19]
(b) Let $\Omega=\{0,1,2,3,4,5,6,7\}$, and put $A=\{1,2,3,4\}, B=\{3,4,5,6\}$, and $C=\{5,6\}$.

Find
(i) $A \cup B$
(ii) $A \cap B$
(iii) $A \cap C$
(iv) A^{c}
(v) $B \backslash A$

Problem 2. [ENRpr] For each of the sets provided in the first column of the table below, indicate (by putting a $\mathrm{Y}(\mathrm{es})$ or an $\mathrm{N}(\mathrm{o})$ in the appropriate cells of the table) whether it is "finite", "infinite", "countable", "countably infinite", "uncountable".

Sets	Finite	Infinite	Countable	Countably Infinite	Uncountable
$\{1\}$					
$\{1,2\}$					
$[1,2]$					
$[1,2] \cup[-1,0]$					
$\{1,2,3,4\}$					
the power set of $\{1,2,3,4\}$					
the set of all real numbers					
the set of all real- valued x satisfy- ing cos $x=0$					
the set of all in- tegers					
$(-\infty, 0]$					
$(-\infty, 0] \cap[0,+\infty)$					

