EES 315: In-Class Exercise \# 9

Instructions

1. Work alone or in a group of no more than three students. For group work, the group cannot be the
same as any of your former groups in this class.
2. [ENRE] Explanation is not required for this exercise.
3. Only one submission is needed for each group.
4. You have two choices for submission:
(a) Online submission via Google Classroom

Date: 18 / 9 / 2020

Name	ID		

- PDF only.
- Paper size should be the same as the posted file
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

5. Do not panic.
6. Consider a random experiment whose sample space is $\{a, b, c, d\}$
with outcome probabilities $0.2,0.3,0.3$, and 0.2 , respectively.
Here, it is given that
$P(\{a\})=0.2$,

Let $A=\{a, b, c\}$, and $B=\{c, d\}$. Find the following probabilities.
$P(\{b\})=0.3$,
$P(\{c\})=0.3$,
$P(\{d\})=0.2$.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(\{c\})}{P(\{c, d\})}=\frac{0.3}{0.3+0.2}=0.6 \quad \begin{array}{c|c}
A \cap B^{c}=A \backslash B=\{a, b\} \\
P\left(A \mid B^{c}\right)=\frac{P\left(A \cap B^{c}\right)}{P\left(B^{c}\right)}=\frac{P(\{a, b\})}{1-P(B)}=\frac{0.2+0.3}{1-0.5}=1
\end{array}
$$

2. Consider the following sequences of 1 s and 0 s which summarize the data obtained from 16 testees in a disease testing experiment.

The results in the i-th column are for the i-th testee. The D row indicates whether each of the testees actually has the disease under investigation. The TP row indicates whether each of the testees is tested positive for the disease. Numbers " 1 " and " 0 " correspond to "True" and "False", respectively.
Suppose we randomly pick a testee from this pool of 16 persons. Let D be the event that this selected person actually has the disease. Let T_{P} be the event that this selected person is tested positive for the disease.
Find the following probabilities. there are 15 testees; so the sample space is finite. We "randomly" pick one testee; so it makes sense to assume that each testee has equal chance of being selected. Therefore, classical probability can be applied here.

	Among the 16 testees, 9 have the disease.	$P\left(T_{P}\right)=\frac{7}{16}$	Among the 16 testees, 7 test positive.
$P\left(T_{P} \cap D\right)=\frac{4}{16}=\frac{1}{4}$	Among the 16 testees, 4 have the disease and test positive.	$P\left(T_{P} \cap D^{c}\right)=\frac{3}{16}$	Among the 16 testees, 3 test positive but do not have the disease.

In each part below, additional information about the selected testee is available; this additional information is given in the condition part. With such information, find the corresponding conditional probability.

$P\left(T_{P} \mid D\right)=\frac{4}{9}$	Among the 9 testees who have the disease, 4 test positive.	Among the $16-9=7$ testees $P\left(T_{P} \mid D^{c}\right)=\frac{3}{7}$ who don't have the disease, 3 test positive.
Alternatively, $P\left(T_{P} \mid D\right)=\frac{P\left(T_{P} \cap D\right)}{P(D)}=\frac{\frac{\overline{4}}{9}}{\frac{9}{16}}=\frac{4}{9}$.		$P\left(T_{P} \mid D^{c}\right)=\frac{P\left(T_{P} \cap D^{c}\right)}{P\left(D^{c}\right)}=\frac{\frac{3}{16}}{1-P(D)}=\frac{\frac{3}{16}}{1-\frac{9}{16}}=\frac{3}{7}$.

