## EES 315: In-Class Exercise # 3

## Instructions

- 1. Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your former groups in this class.
- 2. [ENRE] Explanation is not required for this exercise.
- 3. Only one submission is needed for each group.
- 4 You have two choices for submission:
  - (a) Online submission via Google Classroom
    - PDF only. ٠
    - Only for those who can directly work on the posted files using devices with pen input. •
    - ٠ Paper size should be the same as the posted file.
    - No scanned work, photos, or screen capture.
    - Your file name should start with the 10-digit student ID of one member.
      - (You may add the IDs of other members, exercise #, or other information as well.)
  - (b) Hardcopy submission
- 5. Do not panic.

## [ENRE] Let

A =the interval  $[-\pi, \pi],$ 

B = the set of all real-valued x satisfying  $\cos(x) = -x^2 - \pi$ ,

C = the set of all real-valued x satisfying cos(x) < 0, and

D = the set of all positive integers that are divisible by 3.

For each of the sets provided in the first column of the table below, indicate (by putting a Y(es) or an N(o) in each corresponding cell) whether it is "finite", "infinite", "countably infinite", "uncountable".

|                | Finite | Infinite | Countably Infinite | Uncountable |
|----------------|--------|----------|--------------------|-------------|
| Α              | Ν      | Y        | Ν                  | Y           |
| В              | Y      | Ν        | Ν                  | N           |
| С              | Ν      | Y        | N                  | Y           |
| D              | Ν      | Y        | Y                  | N           |
| [-1,1] ∩ [2,3] | Y      | Ν        | N                  | N           |

First, we find the "key" type of each given set. (Figure 4 from the lecture notes is copied below.)

## Date: <u>26/08</u>/2020 ID (last 3 digits) Name 5 Prapun

5

5



- Any interval with positive length is an <u>uncountable</u> set. Therefore, *A* is uncountable.
- We know that  $x^2 \ge 0$ . So,  $-x^2 \pi \le -\pi$ . Now,  $-\pi < -1$ . However,  $\cos(x) \ge -1$ . Therefore, the function " $-x^2 \pi$ " and the function " $\cos(x)$ " will never intersect. Hence,  $B = \emptyset$  which is <u>finite</u>.
- For set *C*, one can try to make a lousy plot of cos(x) and locate the *x* values that give cos(x) < 0. This is shown below:



Observe that these x values correspond to a union of intervals all of which have positive length. Therefore, C is <u>uncountable</u>.

- D = {3,6,9,...} is <u>countably infinite</u> because its members can be listed in the form a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>,... by setting a<sub>k</sub> = 3k.
- $[-1,1] \cap [2,3] = \emptyset$  which is <u>finite</u>.

|                | Finite | Infinite | Countably Infinite | Uncountable |
|----------------|--------|----------|--------------------|-------------|
| A              |        |          |                    | Y           |
| В              | Y      |          |                    |             |
| С              |        |          |                    | Y           |
| D              |        |          | Y                  |             |
| [-1,1] ∩ [2,3] | Y      |          |                    |             |

Then, we can apply the following reasoning:

- Any <u>uncountable</u> set is infinite. Any infinite set is not finite. Furthermore, any uncountable set is, by definition, not countable and therefore cannot be countably infinite.
  - So, the answers for the corresponding row are N Y N Y.
- Any <u>finite</u> set cannot be infinite, countably infinite, nor uncountable. So, the answers for the corresponding row are <u>Y</u> N N N.
- Any <u>countably infinite</u> set is, by definition, infinite and hence not finite.
  Furthermore, any countably infinite set is, by definition, countable and hence not uncountable.
  So, the answers for the corresponding row are N Y Y N.