EES 315: In-Class Exercise # 2 - Sol

Instructions

 Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your former groups in this class.

Date: 2 1 / 0 8 / 2020									
Name	ID (last 3 digits)								
Prapun	5	5	5						

- 2. [ENRE] Explanation is not required for this exercise.
- 3. Only one submission is needed for each group.
- 4. You have two choices for submission:
 - i. Online submission via Google Classroom
 - PDF only.
 - Only for those who can directly work on the posted files using devices with pen input.
 - Paper size should be the same as the posted file.
 - No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member. (You may add the IDs of other members, exercise #, or other information as well.)
 - ii. Hardcopy submission
- 5. Do not panic.
- 1. A fair coin is flipped six times. The results are:

HTTTHH.

Let *A* be the event that heads occurs.

Let R(A, n) denote the <u>relative frequency</u> of event A for the first n flips.

Calculate R(A,n) from n = 1 to n = 6. Write your answers in the form X.XX.

n	1	2	3	4	5	6
R(A,n)	$\frac{1}{1} = 1.00$	$\frac{1}{2} = 0.50$	$\frac{1}{3} \approx 0.33$	$\frac{1}{4} = 0.25$	$\frac{2}{5} = 0.40$	$\frac{3}{6} \approx 0.50$

Note how the denominator is increased as we increase the value of n.

Recall that, to find the relative frequency of an event A for the first n trials, we use the formula:

$$R(A,n) = \frac{N(A,n)}{n} = \frac{\text{\#trials that } A \text{ occurs}}{n}$$