Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of
your former groups after the midterm.
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen

Date: $17 / 11 / 2020$			
Name	ID		

- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10-digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.

In this question, we consider two distributions for a random variable X.
In part (a), which corresponds to the second column in the table below, X is a discrete random variable with its pmf specified in the first row.
In part (b), which corresponds to the third column, X is a continuous random variable with its pdf specified in the first row.

	$p_{X}(x)= \begin{cases}c x^{3}, & x \in\{1,2\}, \\ 0, & \text { otherwise } .\end{cases}$	$f_{X}(x)= \begin{cases}c x^{3}, & x \in[1,2) \\ 0, & \text { otherwise }\end{cases}$
Find c	$" \Sigma=1 ":$$\begin{aligned} p_{X}(1)+p_{X}(2) & =1 \\ c(1)^{3}+c(2)^{3} & =1 \\ 9 c & =1 \\ c & =\frac{1}{9} \end{aligned}$$x$ $p_{X}(x)$ 1 $c(1)^{3}=c=\frac{1}{9}$ 2 $c(2)^{3}=8 c=\frac{8}{9}$	We need " $\int=1$ ". $\begin{aligned} \int_{-\infty}^{\infty} f_{X}(x) d x & =\int_{1}^{2} f_{X}(x) d x \\ & =\int_{1}^{2} c x^{3} d x=\left.\frac{c x^{4}}{4}\right\|_{1} ^{2} \\ & =\frac{c}{4}\left(2^{4}-1^{4}\right)=\frac{15}{4} c \end{aligned}$ Therefore, $\begin{aligned} \frac{15}{4} c & =1 \\ c & =\frac{4}{15} \end{aligned}$
Find $P[0<X \leq 1]$	The possible values of this RV are 1 and 2 . Among these, only " 1 " satisfies the condition. Therefore, $\begin{aligned} P[0<X \leq 1] & =P[X=1] \\ & =p_{X}(1)=\frac{1}{9} . \end{aligned}$	$\begin{aligned} & f_{x}(a)=0 \\ & P[0<x \leq 1]=\int_{0}^{1} f_{X}(x) d x=\int_{0}^{1} L_{0}^{2} d x \\ &=\frac{c x}{4} \frac{c}{4}=\frac{1}{15}=0 \end{aligned}$

