EES 315: In-Class Exercise # 21

Instructions

- Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm.
 Only one submission is needed for each group.
- Only one submission is needed for each group.
 You have two choices for submission:
 - (a) Online submission via Google Classroom
 - PDF only.
 - Only for those who can directly work on the posted files using devices with pen input.
 Paper size should be the same as the posted file.
 - Paper size should be the same as the posted fi
 No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member.
 - (You may add the IDs of other members, exercise #, or other information as well.)
- (b) Hardcopy submission4. **Do not panic.**

In this question, we consider two distributions for a random variable X.

In part (a), which corresponds to the second column in the table below, X is a *discrete* random variable with its pmf specified in the first row.

In part (b), which corresponds to the third column, X is a *continuous* random variable with its pdf specified in the first row.

	$p_{X}(x) = \begin{cases} cx^{3}, & x \in \{1, 2\}, \\ 0, & \text{otherwise.} \end{cases}$	$f_{X}(x) = \begin{cases} cx^{3}, & x \in [1,2), \\ 0, & \text{otherwise.} \end{cases}$
Find c	" $\Sigma = 1$ ": $p_X(1) + p_X(2) = 1$ $c(1)^3 + c(2)^3 = 1$ 9c = 1 $c = \frac{1}{9}$. $x p_X(x)$ $1 c(1)^3 = c = \frac{1}{9}$ $2 c(2)^3 = 8c = \frac{8}{9}$	We need " $\int = 1$ ". $\int_{-\infty}^{\infty} f_X(x) dx = \int_{1}^{2} f_X(x) dx$ $= \int_{1}^{2} cx^3 dx = \frac{cx^4}{4} \Big _{1}^{2}$ $= \frac{c}{4} (2^4 - 1^4) = \frac{15}{4} c$ Therefore, $\frac{15}{4} c = 1$ $c = \frac{4}{15}.$
Find $P[0 < X \le 1]$	The possible values of this RV are 1 and 2. Among these, only "1" satisfies the condition. Therefore, $P[0 < X \le 1] = P[X = 1]$ $= p_X(1) = \frac{1}{9}$.	$P[0 < X \le 1] = \int_{0}^{1} f_{X}(x) dx = \int_{0}^{1} \frac{1}{4} \int_{0}^{$

Date: 17 / 11 / 2020			
Name	ID (last 3 digits)		