EES 315: In-Class Exercise # 20

Date: 13 / 11 / 2020

Name

ID (last 3 digits)

Instructions

- Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm.
- Only one submission is needed for each group.
- You have two choices for submission:
 - (a) Online submission via Google Classroom
 - PDF only.
 - Only for those who can directly work on the posted files using devices with pen input.
 - Paper size should be the same as the posted file.
 - No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member.
 - (You may add the IDs of other members, exercise #, or other information as well.)
 - (b) Hardcopy submission
- 4. Do not panic.
- 1. Continue from the previous exercise.

Find $\mathbb{E}[X^2]$ and Var[X] for the random variable X defined in each part below:

$p_{X}(x)$	$\mathbb{E}[X]$	$\mathbb{E}ig[X^2ig]$	Var[X]
$p_{x}(x) = \begin{cases} \frac{1}{6}x^{2}, & x \in \{-1,1,2\}, \\ 0, & \text{otherwise.} \end{cases}$ $\frac{x}{-1} = \frac{\frac{1}{6}}{\frac{1}{6}}$ $\frac{1}{2} = \frac{\frac{2}{3}}{3}$	$\frac{4}{3}$	$= \sum_{x} x^{2} p_{X}(x)$ $= \left((-1)^{2} \times \frac{1}{6} \right) + \left(1^{2} \times \frac{1}{6} \right) + \left(2^{2} \times \frac{2}{3} \right)$ $= \frac{1}{6} + \frac{1}{6} + \frac{8}{3} = \frac{9}{3} = 3.$	$= \mathbb{E}[X^{2}] - (\mathbb{E}X)^{2}$ $= 3 - \left(\frac{4}{3}\right)^{2} = \frac{11}{9}$ ≈ 1.2222
$p_{X}(x) = \begin{cases} 0.4, & x = -1, 1, \\ 0.2, & x = 2, \\ 0, & \text{otherwise.} \end{cases}$ $\frac{x}{-1} \frac{p_{X}(x)}{0.4}$ $\frac{1}{2} \frac{0.4}{0.2}$	0.4	$= \sum_{x} x^{2} p_{X}(x)$ $= ((-1)^{2} \times 0.4) + (1^{2} \times 0.4) + (2^{2} \times 0.2)$ $= 0.4 + 0.4 + 0.8$ $= 1.6 = \frac{8}{5}$	$= \mathbb{E}[X^2] - (\mathbb{E}X)^2$ $= 1.6 - (0.4)^2$ $= 1.44 = \frac{36}{25}$