Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm.
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10-digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.
5. Find the expected value of the random variable X defined in each part below:
(a) $p_{X}(x)= \begin{cases}c x^{2}, & x \in\{-1,1,2\}, \\ 0, & \text { otherwise } .\end{cases}$

First, we need to solve for the value of the unknown constant c.
To be a pmf, we need " $\Sigma=1$ ". So,

$$
\begin{aligned}
p_{X}(-1)+p_{X}(1)+p_{X}(2) & =1 \\
c(-1)^{2}+c(1)^{2}+c(2)^{2} & =1 \\
c & =\frac{1}{6}
\end{aligned}
$$

x	$p_{X}(x)$
-1	$c=\frac{1}{6}$
1	$c=\frac{1}{6}$
2	$4 c=4 \times \frac{1}{6}=\frac{2}{3}$

Therefore,

$$
\begin{aligned}
\mathbb{E} X & =\sum_{x} x p_{X}(x) \\
& =\left((-1) \times p_{X}(-1)\right)+\left(1 \times p_{X}(1)\right)+\left(2 \times p_{X}(2)\right) \\
& =\left((-1) \times \frac{1}{6}\right)+\left(1 \times \frac{1}{6}\right)+\left(2 \times \frac{2}{3}\right)=\frac{4}{3} \approx 1.33 .
\end{aligned}
$$

(b) $p_{X}(x)= \begin{cases}0.4, & x=-1,1, \\ c, & x=2, \\ 0, & \text { otherwise } .\end{cases}$

$$
\begin{aligned}
" \Sigma=1 ": \quad p_{X}(-1)+p_{X}(1)+p_{X}(2) & =1 \\
0.4+0.4+c & =1
\end{aligned}
$$

$$
c=0.2
$$

x	$p_{X}(x)$
-1	0.4
1	0.4
2	$c=0.2$

$\mathbb{E} X=\sum_{x} x p_{X}(x)=((-1) \times 0.4)+(1 \times 0.4)+(2 \times 0.2)=0.4$.
(c) $F_{X}(x)= \begin{cases}0, & x<-1, \\ 0.3, & -1 \leq x<2, \\ 1, & x \geq 2 .\end{cases}$

This cdf has two jumps; one is @ $x=-1$ and another one is @ $x=2$.
The jump sizes are 0.4 and 0.6 , respectively.

x	$p_{X}(x)$
-1	0.3
2	0.7

$$
\mathbb{E} X=\sum_{x} x p_{X}(x)=((-1) \times 0.3)+(2 \times 0.7)=1.1
$$

