EES 315: In-Class Exercise # 18

Instructions

- 1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm.
- 2. Only one submission is needed for each group. 3.
 - You have two choices for submission:
 - (a) Online submission via Google Classroom
 - PDF only. ٠ •
 - Only for those who can directly work on the posted files using devices with pen input.
 - Paper size should be the same as the posted file. No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member.
 - (You may add the IDs of other members, exercise #, or other information as well.)
 - (b) Hardcopy submission
- Do not panic. 4.
- 1. Consider the random variable specified in each part below.
 - (a) Write down its (minimal) support.
 - (b) Find $P[X \le \pi]$. Your answer should be of the form 0.XXXX.

	(minimal) support	$P[X \le \pi]$
$X \sim \mathcal{G}_0(0.4)$	The minimal support of any Geometric ₀ RV is {0,1,2, }.	$p_X(x) = \begin{cases} p(1-p)^x, & x = 0, 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$
		The possible values of X are 0,1,2, Among these, only 0,1,2,3 satisfies the condition " $\leq \pi$ ". Therefore,
		$P[X \le \pi] = p_X(0) + p_X(1) + p_X(2) + p_X(3)$ = $p(1-p)^0 + p(1-p)^1 + p(1-p)^2 + p(1-p)^3$ = $0.4(1+0.6+0.6^2+0.6^3) \approx 0.8704.$
$X \sim \mathcal{P}(0.4)$	The minimal support of any Poisson RV is {0,1,2, }.	$p_X(x) = \begin{cases} e^{-\alpha} \frac{\alpha^x}{x!}, & x = 0, 1, 2,, \\ 0, & \text{otherwise.} \end{cases}$ The possible values of X are 0, 1, 2, Among these, only 0, 1, 2, 3 satisfies the condition " $\leq \pi$ ". Therefore, $P[X \leq \pi] = p_X(0) + p_X(1) + p_X(2) + p_X(3)$ $= e^{-0.4} \frac{0.4^0}{0!} + e^{-0.4} \frac{0.4^1}{1!} + e^{-0.4} \frac{0.4^2}{2!} + e^{-0.4} \frac{0.4^3}{3!}$ $\approx 0.9992.$

2. [ENRPa] A certain binary-symmetric communication channel has a crossover probability (bit-error rate) of 0.4. Assume bit errors occur independently. For each of the random variables defined below, indicate the name and the parameter(s) of the family it belongs to.

Random Variable	Family
Consider the situation when 7 bits are input into this channel. Let $N =$ the number of bit errors at the channel output.	B(7,0.4)
Consider the situation when a sequence of bits $b_1b_2b_3 \cdots$ are input into this channel. Let L = the index of the bit that corresponds to the <i>first</i> bit error at the channel output.	$G_{1}(0.4)$

Date: 6 / 11 / 2020 ID (last 3 digits) Name