Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of
your former groups after the midterm.
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture
- Your file name should start with the 10 -digit student ID of one member. (You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.

Consider the random variable specified in each part below.
i) Write down its (minimal) support.
ii) Find $P[X=1]$. Your answer should be of the form 0.XXXX.

	(minimal) support	$P[X=1]$
$\begin{gathered} X \sim \mathcal{U}(\{-2,-1,3\}) \\ X \sim \operatorname{Uniform}(S) \end{gathered}$	The minimal support of a uniform RV is the set S being specified. Here, $S=\{-2,-1,3\} .$	$p_{X}(x)=\left\{\begin{array}{cc} \frac{1}{\|S\|}, & x \in S \\ 0, & \text { otherwise } \end{array}\right.$ Here, $\|S\|=3$. Because $1 \notin S$, we have $P[X=0]=p_{X}(1)=0=0.0000$.
$\begin{gathered} X \sim \operatorname{Bernoulli}(0.2) \\ X \sim \operatorname{Bernoulli}(p) \end{gathered}$	The (minimal) support of any Bernoulli RV is $\{0,1\}$.	$p_{X}(x)=\left\{\begin{array}{cc} 1-p, & x=0 \\ p, & x=1 \\ 0, & \text { otherwise } \end{array}\right.$ Here, $p=0.2$. $P[X=1]=p_{X}(1)=p=0.2=0.2000$
$\begin{aligned} X & \sim \mathcal{B}\left(3, \frac{1}{4}\right) \\ X & \sim \operatorname{Binomial}(n, p) \end{aligned}$	The (minimal) support of a Binomial RV is $\{0,1, \ldots, n\}$. Here, $n=3$. Therefore, the (minimal) support is $\{0,1,2,3\}$.	Here, $n=3$ and $p=\frac{1}{4}$. $p_{X}(x)=\left\{\begin{array}{cc} \binom{3}{x}\left(\frac{1}{4}\right)^{x}\left(1-\frac{1}{4}\right)^{3-x}, & x=0,1,2,3 \\ 0, & \text { otherwise } \end{array}\right.$ Therefore, $\begin{aligned} P[X=1] & =p_{X}(1)=\binom{3}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{3-1} \\ & =\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \approx 0.4219 . \end{aligned}$

