Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of
your former groups after the midterm.
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen

Date: 30 / 10 / 2020

Name	ID		

- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.
5. Consider a random variable X whose pmf is given by $p_{X}(x)= \begin{cases}c, & x=-1,2, \\ 0, & \text { otherwise }\end{cases}$
a. Find the constant c.

$$
" \Sigma=1 " \Rightarrow p_{X}(-1)+p_{X}(2)=1 \Rightarrow c+c=1 \Rightarrow c=0.5
$$

b. Plot the cdf of this random variable.

Recall that the cdf can be derived from the pmf by using the $p_{x}(x)$ as the jump amount at x.
2. Consider a random variable X whose cdf is given by

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<0, \\
0.2, & 0 \leq x<2, \\
0.6, & 2 \leq x<4, \\
1, & x \geq 4 .
\end{array} \quad \begin{array}{l}
\text { At } x=-1, \text { there is a jump of size } 0.2 . \\
\text { At } x=2 \text {, there is a jump of size 0.4. }
\end{array} \text { At } x=4\right. \text {, there is a jump of size 0.4. }
$$

a. Find $P[X \leq 3]$.

By definition, $P[X \leq 3]=F_{X}(3)$. Because $2 \leq 3<4$, we have $F_{X}(3)=0.6$.
b. Find $P[X>3]$.

Because $[X>3]$ and $[X \leq 3]$ are opposite (complementary) events, we know that

$$
P[X>3]=1-P[X \leq 3]=1-0.6=0.4
$$

c. Plot the pmf of X.

For discrete RV, the pmf can be derived from the jump amounts in the cdf plot.
Here, the jumps in the cdf happen three times: at $x=0, x=$ 2 , and $x=4$.
The jump amounts are $0.2,0.4$, and 0.4 , respectively.
Therefore, $p_{X}(x)=\left\{\begin{array}{cc}0.2, & x=0, \\ 0.4, & x=2, \\ 0.4, & x=4, \\ 0, & \text { otherwise } .\end{array}\right.$

