Instructions

1. Work alone or in a group of no more than three students. The group cannot be the same as any of
your former groups after the midterm.
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen

Date: $28 / 10 / 2020$		
Name	ID	

- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10 -digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.
5. Consider a random experiment in which you roll a six-sided fair dice (whose faces are numbered 1-6). We define the following random variable from the outcomes of this experiment:

$$
Y(\omega)=(-1)^{\omega} .
$$

a. Find all possible values of the random variable Y.

ω	1	2	3	4	5	5
$Y(\omega)$	-1	1	-1	1	-1	1

So, there are two possible values: -1 and 1 .
b. Plot its probability mass function $p_{Y}(y)$. (Recall that we use stem plot for pmf.)

$$
\begin{aligned}
Y(\omega) & =1 \text { when } \omega=2,4,6 \text {. Therefore, } P[Y=1]=P(\{2,4,6\})=\frac{3}{6}=\frac{1}{2} . \text { (same as in Exc. 14) } \\
Y(\omega) & =-1 \text { when } \omega=1,3,5 \text {. Therefore, } P[Y=-1]=P(\{1,3,5\})=\frac{3}{6}=\frac{1}{2} . \\
p_{Y}(y) & \equiv P[Y=y] \\
& = \begin{cases}\frac{1}{2}, & y=-1,1, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

c. Find $P[Y>-1]$.

We consider the two possible values of Y. Only " 1 " satisfies the condition " >-1 ".
Therefore, $P[Y>-1]=p_{X}(1)=\frac{1}{2}$.
d. Find $P[Y \leq 1.0001]$.

Both " -1 " and " 1 " satisfy the condition " ≤ 1.0001 ". Therefore, $P[Y \leq 1.0001]=p_{X}(-1)+p_{X}(1)=1$.
e. (Optional) Plot $g(c)=P[Y \leq c]$ for all values of c between -2 and 2. (c may not be an integer.)

This function is exactly the same as the cdf except that the argument is c instead of the usual y.
In particular, $g(c)=F_{Y}(c)$.

