
## EES 315: In-Class Exercise # 15

## Instructions

- 1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm.
- Only one submission is needed for each group
  You have two choices for submission:
  - You have two choices for submission: (a) Online submission via Google Classroom
    - Online submission v
      PDF only.
      - Only for those who can directly work on the posted files using devices with pen input.
      - Paper size should be the same as the posted file.
      - No scanned work, photos, or screen capture.
        - Your file name should start with the 10-digit student ID of one member. (You may add the IDs of other members, exercise #, or other information as well.)
  - (You may ac (b) Hardcopy submission
- 4. Do not panic.
- 1. Consider a random experiment in which you roll a six-sided fair dice (whose faces are numbered 1-6). We define the following random variable from the outcomes of this experiment:

$$Y(\omega) = (-1)^{\omega}$$
.

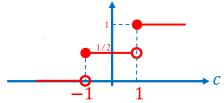
a. Find all possible values of the random variable *Y*.



- b. Plot its probability mass function  $p_{Y}(y)$ . (Recall that we use stem plot for pmf.)
  - $Y(\omega) = 1$  when  $\omega = 2,4,6$ . Therefore,  $P[Y = 1] = P(\{2,4,6\}) = \frac{3}{6} = \frac{1}{2}$ . (same as in Exc. 14)  $Y(\omega) = -1$  when  $\omega = 1,3,5$ . Therefore,  $P[Y = -1] = P(\{1,3,5\}) = \frac{3}{6} = \frac{1}{2}$ .



c. Find P[Y > -1].


We consider the two possible values of *Y*. Only "1" satisfies the condition " > -1".

Therefore,  $P[Y > -1] = p_X(1) = \frac{1}{2}$ .

d. Find  $P[Y \le 1.0001]$ .

Both "-1" and "1" satisfy the condition "  $\leq 1.0001$ ". Therefore,  $P[Y \leq 1.0001] = p_X(-1) + p_X(1) = 1$ .

e. (Optional) Plot  $g(c) = P[Y \le c]$  for all values of *c* between -2 and 2. (*c* may not be an integer.) This function is exactly the same as the cdf except that the argument is *c* instead of the usual *y*. In particular,  $g(c) = F_Y(c)$ .



| Date: 28 / 10 / 2020 |    |                    |  |
|----------------------|----|--------------------|--|
| Name                 | ID | ID (last 3 digits) |  |
|                      |    |                    |  |
|                      |    |                    |  |
|                      |    |                    |  |