EES 315: In-Class Exercise # 14

Instructions

- 1. Work alone or in a group of no more than three students. The group cannot be the same as any of your former groups after the midterm.
- 2. Only one submission is needed for each group. 3. You have two choices for submission:
 - (a) Online submission via Google Classroom
 - PDF only. ٠
 - Only for those who can directly work on the posted files using devices with pen input.
 - Paper size should be the same as the posted file.
 - No scanned work, photos, or screen capture.
 - Your file name should start with the 10-digit student ID of one member. (You may add the IDs of other members, exercise #, or other information as well.)
 - (b) Hardcopy submission
- Do not panic. 4.
- 1. Consider a random experiment in which you roll a six-sided fair dice (whose faces are numbered 1-6). We define the following random variables from the outcomes of this experiment:

$$X(\omega) = \omega$$
 and $Y(\omega) = (-1)^{\omega}$.

- a. Find P[X=1]. $X(\omega) = 1$ when $\omega = 1$. Therefore, $P[X = 1] = P(\{1\}) = \frac{1}{6}$.
- b. Find P[Y=1].

 $Y(\omega) = 1$ when $\omega = 2,4,6$. Therefore, $P[Y = 2] = P(\{2,4,6\}) = \frac{3}{6} = \frac{1}{2}$.

2. Consider a random experiment in which you roll a 10-sided fair dice (whose faces are numbered 0-9). Define a random variable Z from the outcomes of this experiment by

$$Z(\omega) = (\omega - 5)^2.$$

 $\omega > \underbrace{5 + \sqrt{5} \text{ or } \omega}_{\approx 7.2361} < \underbrace{5 - \sqrt{5}}_{\approx 2.7639}$

 $\omega = 8 \text{ or } 9$ $\omega = 0, 1, \text{ or } 2 \bigstar$

Therefore, $P[Z > 5] = P(\{0,1,2,8,9\}) = \frac{5}{10} = \frac{1}{2}$.

- a. Find P[Z = 25]. Not in Ω. $Z(\omega) = 25$ when $(\omega - 5)^2 = 25$. $\omega = 5 \pm 5 = 0$ or (X) Therefore, $P[Z = 25] = P(\{0\}) = \frac{1}{10}$.
- b. Find P[Z > 5].

Method 1:

$$Z(\omega) > 5$$
 when $(\omega - 5)^2 > 5$.

Dute: 21 / 10 / 2020			
Name	ID (last 3 digits)		

$$\Omega = \{0, 1, 2, ..., 9\}$$

Method 2: Because Ω is not large, it