Instructions

1. Work alone or in a group of no more than three students.
2. Only one submission is needed for each group.
3. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.
- Only for those who can directly work on the posted files using devices with pen input.

Date: $7 / 10 / 2020$			
Name	ID		

- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10-digit student ID of one member. (You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

4. Do not panic.
(1) Suppose $P(A)=0.5$ and $P(B)=0.2$.

Find $P(A \cap B)$ to make events A and B independent.

By definition, events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Therefore, $P(A \cap B)=0.5 \times 0.2=0.1$.
(2) Suppose $P(D)=0.6$ and $P(C \cup D)=0.8$.

Find $P(C \cap D)$ to make events C and D independent.

We will use a systematic approach. Consider the Venn diagram below.

As usual, for two events we partition the sample space (Ω) into 4 parts.

Let p_{i} be the probability of the $i^{\text {th }}$ part.
Observe that $P(C \cap D)$ is p_{1}.

From the provided information, we know that

As usual, we also know that

$$
\left.\begin{array}{rl}
p_{1}+p_{3}=P(D)=0.6 \\
+ & p_{2}+p_{3}=P(C \cup D) \tag{2}\\
\\
p_{1}+p_{2}+p_{3}+p_{4}= & =1
\end{array}\right\}
$$

The requirement that events C and D must be independent means

$$
\begin{equation*}
P(C \cap D)=P(C) P(\not \subset) \tag{3}
\end{equation*}
$$

This is equivalent to

$$
p_{1}=\left(p_{1}+p_{2}\right)\left(p_{1}+\square p_{3}\right)
$$

Note that we now have four equations to solve for four unkhowns. This should be possible to do.
Here, it requires only a few more steps to solve for p_{1}.

There are usually other "easier" solutions. However, they are not as systematic as the solution above.
For example, one can start with

$$
P(C \cup D)=P(C)+P(D)-P(C \cap D)
$$

Forcing the events C and D to be independent means we must have $P(C \cap D)=P(C) P(D)$.
So,

$$
P(C \cup D)=P(C)+P(D)-P(C) P(D) .
$$

Plugging in the provided values, we have

$$
0.8=P(C)+0.6-P(C) 0.6
$$

This gives

$$
P(C)=0.5 \text {. }
$$

Therefore,

$$
P(C \cap D)=P(C) P(D)=0.5 \times 0.6=0.3
$$

