Instructions

1. Work alone or in a group of no more than three students. For group work, the group cannot be the same as any of your former groups in this class.
2. [ENRE] Explanation is not required for this exercise.
3. Only one submission is needed for each group.
4. You have two choices for submission:
(a) Online submission via Google Classroom

- PDF only.

Date: $23 / 9 / 2020$	ID	
Name	(asa difit	

- Only for those who can directly work on the posted files using devices with pen input.
- Paper size should be the same as the posted file.
- No scanned work, photos, or screen capture.
- Your file name should start with the 10-digit student ID of one member.
(You may add the IDs of other members, exercise \#, or other information as well.)
(b) Hardcopy submission

5. Do not panic.
6. Consider a medical diagnostic test for detecting an illness (L). Suppose the probability that the test correctly identifies someone with the illness as positive $(+)$ is 0.9 , and the probability that the test correctly identifies someone without the illness as negative (-) is 0.8 . The probability of finding the illness in the general population is 0.1 .
(a) Find $P(-\mid L)$, the conditional probability that a randomly-chosen person tests negative given that the person does have the illness.
We are given three pieces of information: $P(L)=0.1, P(+\mid L)=0.9, P\left(-\mid L^{c}\right)=0.8$.
Recall that $P\left(A^{c} \mid B\right)=1-P(A \mid B)$.
Therefore, $P(-\mid L)=1-P(+\mid L)=1-0.9=0.1$.
(b) A random person takes this test.

What is the probability that this person tests positive?
$P\left(+\mid L^{c}\right)=1-P\left(-\mid L^{c}\right)=1-0.8=0.2$
$P\left(L^{c}\right)=1-0.1=0.9$
$P\left(L^{c}\right)=1-0.1=0.9$

We can also get this expression directly from the total probability theorem.

$$
\begin{aligned}
P(+) & =P(+\cap L)+P\left(+\cap L^{c}\right) \\
& =P(+\mid L) P(L)+P\left(+\mid L^{c}\right) P\left(L^{c}\right) \\
& =0.9 \times 0.1+0.2 \times 0.9 \\
& =0.27
\end{aligned}
$$

(c) A random person takes this test, and the test result is positive.

What is the probability that this person has the illness?

$$
P(L \mid+)=\frac{P(L \cap+)}{P(+)}=\frac{P(+\mid L) P(L)}{P(+)}=\frac{0.9 \times 0.1}{0.27}=\frac{1}{3} \approx 0.33 .
$$

