
EES 315: Probability and Random Processes 2020/1

HW Solution 1 — Due: September 2, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. (Set Theory) [ENRpr]

(a) In the Venn diagrams below,
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(i) (ii) (iii)

(iv) (v)

shade the region that corresponds to the following events:

(i) Ac

(ii) A ∩B
(iii) (A ∩B) ∪ C
(iv) (B ∪ C)c

(v) (A ∩B)c ∪ C

[Montgomery and Runger, 2010, Q2-19]

(b) Let Ω = {0, 1, 2, 3, 4, 5, 6, 7}, and put A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {5, 6}.
Find

(i) A ∪B
(ii) A ∩B

(iii) A ∩ C
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(iv) Ac

(v) B \ A

Solution :

(a) See Figure 1.1
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(iv) (v)

Figure 1.1: Venn diagrams for events in Problem 1

(b) A ∪B = {1, 2, 3, 4, 5, 6}, A ∩B = {3, 4}, A ∩ C = ∅, B \ A = {5, 6} = C.

Problem 2. [ENRpr] For each of the sets provided in the first column of the table below,
indicate (by putting a Y(es) or an N(o) in the appropriate cells of the table) whether it is
“finite”, “infinite”, “countable”, “countably infinite”, “uncountable”.
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Sets Finite Infinite Countable Countably Infinite Uncountable
{1}
{1, 2}
[1, 2]
[1, 2] ∪ [−1, 0]
{1, 2, 3, 4}
the power set of
{1, 2, 3, 4}
the set of all real
numbers
the set of all real-
valued x satisfy-
ing cos x = 0
the set of all in-
tegers
(−∞, 0]

(−∞, 0] ∩ [0,+∞)

Solution : First, note that the intersection in the last row can be simplified into a
singleton {0}. Being an intersection of intervals may make it look like an uncountable sets.
However, only one number survives the intersection.

The sets {1}, {1, 2}, {1, 2, 3, 4}, 2{1,2,3,4}, and {0} are all finite set because their size
(cardinality) are finite. Because they are finite, they are not infinite. Any finite set is
countable. So, they are countable. They are not infinite; so they can’t be countably infinite
nor uncountable. Their corresponding rows should be Y N Y N N.

The x that satisfies cos x = 0 is any x of the form π
2

+ kπ where k is any integer. So,
the collection of these x has the same size (cardinality) as the set of all integers. They are
countably infinite which means they are infinite and countable. Because they are countable,
they are not uncountable. Because they are infinite, they are not finite. Their corresponding
rows should be N Y Y Y N.

The sets [1, 2], [1, 2] ∪ [−1, 0], R, and (−∞, 0] are all intervals and hence uncountable.
Uncountable sets are not countable and hence can’t be countably infinite. They are infinite
and hence not finite. Their corresponding rows should be N Y N N Y.
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Sets Finite Infinite Countable Countably Infinite Uncountable
{1} Y N Y N N
{1, 2} Y N Y N N
[1, 2] N Y N N Y
[1, 2] ∪ [−1, 0] N Y N N Y
{1, 2, 3, 4} Y N Y N N
the power set of
{1, 2, 3, 4} Y N Y N N

the set of all real
numbers

N Y N N Y

the set of all real-
valued x satisfy-
ing cos x = 0

N Y Y Y N

the set of all in-
tegers

N Y Y Y N

(−∞, 0] N Y N N Y
(−∞, 0] ∩ [0,+∞) Y N Y N N
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HW Solution 2 — Due: September 9, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. [Montgomery and Runger, 2010, Q2-54] Each of the possible five outcomes of
a random experiment is equally likely. The sample space is {a, b, c, d, e}. Let A denote the
event {a, b}, and let B denote the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

Solution : Because the outcomes are equally likely, we can simply use classical proba-
bility.

(a) P (A) = |A|
|Ω| =

2

5

(b) P (B) = |B|
|Ω| =

3

5

(c) P (Ac) = |Ac|
|Ω| = 5−2

5
=

3

5

(d) P (A ∪B) = |{a,b,c,d,e}|
|Ω| = 5

5
= 1

(e) P (A ∩B) = |∅|
|Ω| = 0

Problem 2. (Classical Probability and Combinatorics) A Web ad can be designed from
four different colors, three font types, five font sizes, three images, and five text phrases.

(a) How many different designs are possible? [Montgomery and Runger, 2010, Q2-51]

(b) A specific design is randomly generated by the Web server when you visit the site. If
you visit the site five times, what is the probability that you will not see the same
design? [Montgomery and Runger, 2010, Q2-71]
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Solution :

(a) By the multiplication rule, total number of possible designs

= 4× 3× 5× 3× 5 = 900 .

(b) From part (a), total number of possible designs is 900. The sample space is now the
set of all possible designs that may be seen on five visits. It contains (900)5 outcomes.
(This is ordered sampling with replacement.)

The number of outcomes in which all five visits are different can be obtained by realizing
that this is ordered sampling without replacement and hence there are (900)5 outcomes.
(Alternatively, On the first visit any one of 900 designs may be seen. On the second visit
there are 899 remaining designs. On the third visit there are 898 remaining designs.
On the fourth and fifth visits there are 897 and 896 remaining designs, respectively.
From the multiplication rule, the number of outcomes where all designs are different
is 900× 899× 898× 897× 896.)

Therefore, the probability that a design is not seen again is

(900)5

9005
≈ 0.9889.

Problem 3. (Combinatorics) Consider the design of a communication system in the
United States.

(a) How many three-digit phone prefixes that are used to represent a particular geographic
area (such as an area code) can be created from the digits 0 through 9?

(b) How many three-digit phone prefixes are possible in which no digit appears more than
once in each prefix?

(c) As in part (a), how many three-digit phone prefixes are possible that do not start with
0 or 1, but contain 0 or 1 as the middle digit?

[Montgomery and Runger, 2010, Q2-45]
Solution :

(a) From the multiplication rule (or by realizing that this is ordered sampling with re-
placement), 103 = 1, 000 prefixes are possible

(b) This is ordered sampling without replacement. Therefore (10)3 = 10 × 9 × 8 = 720
prefixes are possible

(c) From the multiplication rule, 8× 2× 10 = 160 prefixes are possible.
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Problem 4. (Classical Probability and Combinatorics) Shuffle a deck of cards and
cut it into three piles. What is the probability that (at least) a court card will turn up on
top of one of the piles.

Hint: There are 12 court cards (four jacks, four queens and four kings) in the deck.
Solution : In [Lovell, 2006, p. 17–19], this problem is named “Three Lucky Piles”.

Method 1: When somebody cuts three piles, they are, in effect, randomly picking three
cards from the deck. There are 52 × 51 × 50 possible outcomes. The number of outcomes
that do not contain any court card is 40× 39× 38. So, the probability of having at least one
court card is

52× 51× 50− 40× 39× 38

52× 51× 50
≈ 0.553.

Method 2: Note that our solution above, especially the part where we use the words “in
effect”, may not be so evident to some of you. If you want to solve this question directly, you
can approach it using the total probability theorem which is studied in Chapter 6. In the
beginning, we shuffle the cards. So, after the shuffling, we will have a deck of 52 cards with
all the possible 52! permutations being equally likely. (In our mind,) we label the cards with
#1 to #52 from the top to bottom. Now, the next step is to cut it into three piles. Note that
this is the same as choosing two cards (from #2 (top) to #52 (bottom)) to indicate where
the two boundaries (which are the same as the two cards at the top of second and third
piles) are. Note also that this process is usually biased. Most will try to divide the deck into
three piles of approximately equal size. So, it is unlikely that you will have the first piles
with 50 cards, the second with only one card, and the third with only one card. So, classical
probability can not be used here. We only know that there are

(
51
2

)
= 1, 275 ways to perform

the cutting for a particular deck and they are not equally likely. Let event B1, . . . , B1275

denote each of these cases. For example, B134 may be the case in which the cutting positions
are at cards #32 and #45. So, the top cards on the three piles are cards #1, #32, and #45.
Let A be the event that at least one of these cards is a court card. Of course, the “at least
one” counting problem can be simplified by considering the opposite case. Ac is the event
that none of the three top cards is a court card. So, there are 52− 12 = 40 choices for card
#1. There are 40−1 = 39 choices for card #32. There are 39−1 = 38 choices for card #45.
For the remaining 52 − 3 = 49 cards, there is no restriction. So, there are 49! choices. In
total, we have 40×39×38× (49!) shuffled patterns among the 52! equally likely possibilities
that satisfy Ac. Therefore,

P (A |B134 ) =
52!− 40× 39× 38× (49!)

52!
= 1− 40× 39× 38

52× 51× 50
≈ 0.553.

The same reasoning applies to any cutting positions. So, P (A |Bk ) ≈ 0.553 for any k. By
the total probability theorem,

P (A) =
1275∑
k=1

P (A |Bk )P (Bk) ≈
1275∑
k=1

0.553P (Bk) = 0.553
1275∑
k=1

P (Bk) = 0.553× 1 = 0.553.
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Observe that we still don’t know the value of each P (Bk) but we know that the sum of them
is 1.

Problem 5. (Classical Probability) There are three buttons which are painted red on one
side and white on the other. If we tosses the buttons into the air, calculate the probability
that all three come up the same color.

Remarks: A wrong way of thinking about this problem is to say that there are four ways
they can fall. All red showing, all white showing, two reds and a white or two whites and a
red. Hence, it seems that out of four possibilities, there are two favorable cases and hence
the probability is 1/2.

Solution : There are 8 possible outcomes. (The same number of outcomes as tossing
three coins.) Among these, only two outcomes will have all three buttons come up the same

color. So, the probability is 2/8 = 1/4 .
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HW Solution 3 — Due: September 16, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. (Classical Probability and Combinatorics) A bin of 50 parts contains
five that are defective. A sample of two parts is selected at random, without replacement.
Determine the probability that both parts in the sample are defective. [Montgomery and
Runger, 2010, Q2-49]

Solution : The number of ways to select two parts from 50 is
(
50
2

)
and the number of

ways to select two defective parts from the 5 defective ones is
(
5
2

)
Therefore the probability

is (
5
2

)(
50
2

) =
2

245
= 0.0082 .

Alternatively, if the two parts in the sample are selected one by one, then we may also
consider their ordering as well. In such case, we use the formula for “ordered sampling
without replacement” instead of “unordered sampling without replacement”:

(5)2
(50)2

=
5× 4

50× 49
=

2

245
= 0.0082 .

Problem 2. (Classical Probability and Combinatorics) We all know that the chance
of a head (H) or tail (T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin
is tossed ten times, then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).
Solution : There are 210 possible outcomes for ten coin tosses. (For each toss, there is

two possibilities, H or T). Only
(
10
5

)
among these outcomes have exactly heads and five tails.

(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is(

10
5

)
210
≈ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.

Problem 3. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.1)
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(a) What is the coefficient of x12y13 in the expansion of (x+ y)25?

(b) What is the coefficient of x12y13 in the expansion of (2x− 3y)25?

(c) Use the binomial theorem (3.5) to evaluate
n∑

k=0

(−1)k
(
n
k

)
.

Solution :

(a) The coefficient of xryn−r is
(
n
r

)
. Here, n = 25 and r = 12. So, the coefficient is(

25
12

)
= 5, 200, 300 .

(b) We start from the expansion of (a+ b)n. Then we set a = 2x and b = −3y:

(a+ b)n =
n∑

r=0

(
n

r

)
arbn−r =

n∑
r=0

(
n

r

)
(2x)r(−3y)n−r = .

n∑
r=0

(
n

r

)
2r(−3)n−rxryn−r.

(3.2)
Therefore, the coefficient of xryn−r is

(
n
r

)
2r(−3)n−r. Here, n = 25 and r = 12. So, the

coefficient is
(
25
12

)
212(−3)13 = − 25!

12!13!
212313 = −33959763545702400 .

(c) From (3.5), set x = −1 and y = 1, then we have
n∑

k=0

(−1)k
(
n
k

)
= (−1 + 1)n = 0 .

Extra Questions
Here are some optional questions for those who want more practice.

Problem 4. An Even Split at Coin Tossing : Let pn be the probability of getting
exactly n heads (and hence exactly n tails) when a fair coin is tossed 2n times.

(a) Find pn.

(b) Sometimes, to work theoretically with large factorials, we use Stirling’s Formula:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+

1
2) ln(n

e ). (3.3)

Approximate pn using Stirling’s Formula.

(c) Find lim
n→∞

pn.

Solution : Note that we have worked on a particular case (n = 5) of this problem earlier.

(a) Use the same solution as Problem 2; change 5 to n and 10 to 2n, we have

pn =

(
2n
n

)
22n

.
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(b) By Stirling’s Formula, we have(
2n

n

)
=

(2n)!

n!n!
≈
√

2π2n(2n)2ne−2n(√
2πnnne−n

)2 =
4n

√
πn

.

Hence,

pn ≈
1√
πn

. (3.4)

[Mosteller, Fifty Challenging Problems in Probability with Solutions, 1987, Problem 18]

See Figure 3.1 for comparison of pn and its approximation via Stirling’s formula.
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n

 

 

pn

Approximation of pn by Stirling’s Formula

Figure 3.1: Comparison of pn and its approximation via Stirling’s formula

(c) From (3.4), lim
n→∞

pn = 0 . A more rigorous proof of this limit would use the bounds

4n

√
4n
≤
(

2n

n

)
≤ 4n

√
3n+ 1

.

Problem 5. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.5)

(a) Use the binomial theorem (3.5) to simplify the following sums
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(i)
n∑

r=0
r even

(
n
r

)
xr(1− x)n−r

(ii)
n∑

r=0
r odd

(
n
r

)
xr(1− x)n−r

(b) If we differentiate (3.5) with respect to x and then multiply by x, we have

n∑
r=0

r

(
n

r

)
xryn−r = nx(x+ y)n−1.

Use similar technique to simplify the sum
∑n

r=0 r
2
(
n
r

)
xryn−r.

Solution :

(a) To deal with the sum involving only the even terms (or only the odd terms), we first
use (3.5) to expand (x+y)n and (x+(−y))n. When we add the expanded results, only
the even terms in the sum are left. Similarly, when we find the difference between the
two expanded results, only the the odd terms are left. More specifically,

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
((x+ y)n + (y − x)n) , and

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
((x+ y)n − (y − x)n) .

If x+ y = 1, then

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
(1 + (1− 2x)n) , and (3.6a)

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
(1− (1− 2x)n) . (3.6b)

(b)
∑n

r=0 r
2
(
n
r

)
xryn−r = nx

(
x(n− 1)(x+ y)n−2 + (x+ y)n−1

)
.
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HW Solution 4 — Due: September 23, 11:59 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. If A, B, and C are disjoint events with P (A) = 0.2, P (B) = 0.3 and P (C) = 0.4,
determine the following probabilities:

(a) P (A ∪B ∪ C)

(b) P (A ∩B ∩ C)

(c) P (A ∩B)

(d) P ((A ∪B) ∩ C)

(e) P (Ac ∩Bc ∩ Cc)

[Montgomery and Runger, 2010, Q2-75]
Solution :

(a) Because A, B, and C are disjoint, P (A∪B∪C) = P (A)+P (B)+P (C) = 0.3+0.2+0.4 =
0.9.

(b) Because A, B, and C are disjoint, A∩B∩C = ∅ and hence P (A∩B∩C) = P (∅) = 0 .

(c) Because A and B are disjoint, A ∩B = ∅ and hence P (A ∩B) = P (∅) = 0 .

(d) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). By the disjointness among A, B, and C, we have
(A ∩ C) ∪ (B ∩ C) = ∅ ∪ ∅ = ∅. Therefore, P ((A ∪B) ∩ C) = P (∅) = 0 .

(e) From Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c, we have P (Ac ∩ Bc ∩ Cc) = 1− P (A ∪ B ∪ C) =
1− 0.9 = 0.1.

Problem 2. The sample space of a random experiment is {a, b, c, d, e} with probabilities
0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event {a, b, c}, and let B denote
the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)
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(e) P (A ∩B)

(f) P (A|B)

(g) P (B|A)

(h) P (B|Ac)

[Montgomery and Runger, 2010, Q2-55]
Solution :

(a) Recall that the probability of a finite or countable event equals the sum of the proba-
bilities of the outcomes in the event. Therefore,

P (A) = P ({a, b, c}) = P ({a}) + P ({b}) + P ({c})
= 0.1 + 0.1 + 0.2 = 0.4.

(b) Again, the probability of a finite or countable event equals the sum of the probabilities
of the outcomes in the event. Thus,

P (B) = P ({c, d, e}) = P ({c}) + P ({d}) + P ({e})
= 0.2 + 0.4 + 0.2 = 0.8.

(c) Applying the complement rule, we have P (Ac) = 1− P (A) = 1− 0.4 = 0.6.

(d) Note that A ∪B = Ω. Hence, P (A ∪B) = P (Ω) = 1.

(e) P (A ∩B) = P ({c}) = 0.2.

(f) P (A |B ) ≡ P (A∩B)
P (B)

= 0.2
0.8

=
1

4
and

(g) P (B |A) ≡ P (B∩A)
P (A)

= P (A∩B)
P (A)

= 0.2
0.4

=
1

2
.

(h) DO NOT start with P (B|Ac) = 1 − P (B|A). This is not one of the formulas for
conditional probabilities. Here, we will have to go back to the definition:

P (B |Ac ) =
P (B ∩ Ac)

P (Ac)
=

P ({d, e})
P ({d, e})

= 1 .

Problem 3. Let A and B be events for which P (A), P (B), and P (A ∪ B) are known.
Express the following probabilities in terms of the three known probabilities above.
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(a) P (A ∩B)

(b) P (A ∩Bc)

(c) P (B ∪ (A ∩Bc))

(d) P (Ac ∩Bc)

Solution :

(a) P (A ∩B) = P (A) + P (B)− P (A ∪B) . This property is shown in class.

(b) We have seen1 in class that P (A ∩Bc) = P (A)−P (A∩B). Plugging in the expression
for P (A ∩B) from the previous part, we have

P (A ∩Bc) = P (A)− (P (A) + P (B)− P (A ∪B)) = P (A ∪B)− P (B) .

Alternatively, we can start from scratch with the set identity A ∪ B = B ∪ (A ∩Bc)
whose union is a disjoint union. Hence,

P (A ∪B) = P (B) + P (A ∩Bc) .

Moving P (B) to the LHS finishes the proof.

(c) P (B ∪ (A ∩Bc)) = P (A ∪B) because A ∪B = B ∪ (A ∩Bc).

(d) P (Ac ∩Bc) = 1− P (A ∪B) because Ac ∩Bc = (A ∪B)c.

Extra Questions
Here are some optional questions for those who want more practice.

Problem 4.

(a) Suppose that P (A) = 1
2

and P (B) = 2
3
. Find the range of possible values for P (A∩B).

Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.21]

1This shows up when we try to derive the formula P (A∪B) = P (A) +P (B)−P (A∩B). The key idea is
that the set A can be expressed as a disjoint union between A∩B and A∩Bc. Therefore, by finite additivity,
P (A) = P (A ∩B) + P (A ∩Bc). It is easier to visualize this via the Venn diagram.
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(b) Suppose that P (A) = 1
2

and P (B) = 1
3
. Find the range of possible values for P (A∪B).

Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.22]

Solution :

(a) We will try to derive general bounds for P (A ∩B).

First, recall2, from the lecture notes, that “P (A∩B) can not exceed P (A) and P (B)”:

P (A ∩B) ≤ min{P (A), P (B)}. (4.1)

On the other hand, we know that

P (A ∪B) = P (A) + P (B)− P (A ∩B). (4.2)

Now, P (A ∪B) is a probability and hence its value must be between 0 and 1:

0 ≤ P (A ∪B) ≤ 1 (4.3)

Combining (4.3) with (4.2) gives

P (A) + P (B)− 1 ≤ P (A ∩B) ≤ P (A) + P (B). (4.4)

The second inequality in (4.4) is not useful because (4.1) gives a better3 bound. So,
we will replace the second inequality with (4.1):

P (A) + P (B)− 1 ≤ P (A ∩B) ≤ min{P (A), P (B)}. (4.5)

Finally, P (A ∩B) is also a probability and hence it must be between 0 and 1:

0 ≤ P (A ∩B) ≤ 1 (4.6)

Combining (4.6) and (4.5), we have

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B), 1}.

Note that number one at the end of the expression above is not necessary because the
two probabilities under minimization can not exceed 1 themselves. In conclusion,

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B)}.

Plugging in the value P (A) = 1
2

and P (B) = 2
3

gives the range

[
1

6
,
1

2

]
.

Note that the upper-bound can be obtained by constructing an example which has
A ⊂ B. The lower-bound can be obtained by considering an example where A∪B = Ω.

2Again, to see this, note that A ∩ B ⊂ A and A ∩ B ⊂ B. Hence, we know that P (A ∩ B) ≤ P (A) and
P (A ∩B) ≤ P (B).

3When we already know that a number is less than 3, learning that it is less than 5 does not give us any
new information.
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(b) We will try to derive general bounds for P (A ∪B).

By monotonicity, because both A and B are subset of A ∪B, we must have

P (A ∪B) ≥ max{P (A), P (B)}.

On the other hand, we know, from the finite sub-additivity property, that

P (A ∪B) ≤ P (A) + P (B).

Therefore,
max{P (A), P (B)} ≤ P (A ∪B) ≤ P (A) + P (B).

Being a probability, P (A ∪B) must be between 0 and 1. Hence,

max{P (A), P (B), 0} ≤ P (A ∪B) ≤ min {(P (A) + P (B)) , 1} .

Note that number 0 is not needed in the minimization because the two probabilities
involved are automatically ≥ 0 themselves.

In conclusion,

max{P (A), P (B)} ≤ P (A ∪B) ≤ min{(P (A) + P (B)), 1}.

Plugging in the value P (A) = 1
2

and P (B) = 1
3
, we have

P (A ∪B) ∈
[

1

2
,
5

6

]
.

The upper-bound can be obtained by making A ⊥ B. The lower-bound is achieved
when B ⊂ A.

Problem 5. (Classical Probability and Combinatorics) Suppose n integers are chosen
with replacement (that is, the same integer could be chosen repeatedly) at random from
{1, 2, 3, . . . , N}. Calculate the probability that the chosen numbers arise according to some
non-decreasing sequence.

Solution : There are Nn possible sequences. (This is ordered sampling with replace-
ment.) To find the probability, we need to count the number of non-decreasing sequences
among these Nn possible sequences. It takes some thought to realize that this is exactly the
counting problem that we called “unordered sampling with replacement”. In which case, we

can conclude that the probability is

(
n+N−1

n

)
Nn

. The “with replacement” part should be clear

from the question statement. The “unordered” part needs some more thought.
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Method 1 : Because the sequence is non-decreasing, the number of times that each of the
integers {1, 2, . . . , N} shows up in the sequence is the only information that characterizes each
sequence. Once we know the quantities, there is only one way to write the non-decreasing
sequence.

Let xi be the number of times that number i shows up in the sequence. The number of
sequences is then the same as the number of solution to the equation x1 + x2 + · · ·+ xN = n
where the xi are all non-negative integers. We have seen in class that this is equivalent to
“unordered sampling with replacement” and the number of solutions is

(
n+N−1

n

)
.

In “unordered sampling with replacement”, we have objects of many types. Here, the
objects are numbers. The types are the values of the numbers. Interestingly, by requiring
the “order” on the sequence, the counting problem become “unordered sampling”.

Method 2 : [DasGupta, 2010, Example 1.14, p. 12] Consider the following construction
of such non-decreasing sequence. Start with n stars and N − 1 bars. There are

(
n+N−1

n

)
arrangements of these. For example, when N = 5 and n = 2, one arrangement is | ∗ || ∗ |.
Now, add spaces between these bars and stars including before the first one and after the
last one. For our earlier example, we have | ∗ | | ∗ | . Now, put number 1 in the leftmost
space. After this position, the next space holds the same value as the previous one if you
pass a ∗. On the other hand, if you pass a | then the value increases by 1. Note that
because there are N − 1 bars, the last space always gets the value N . What you now have
is a sequence of n + N numbers with bars between consecutive distinct numbers and stars
between consecutive equal numbers. For example, our example would gives 1|2 ∗ 2|3|4 ∗ 4|5.
Note that this gives a non-decreasing sequence of n + N numbers. The corresponding non-
decreasing sequence of n numbers for this arrangement of stars and bars is (2,4); that is we
only take the numbers to the right of the stars. Because there are n stars, our sequence will
have n numbers. It will be non-decreasing because it is a sub-sequence of the non-decreasing
n + N sequence. This shows that any arrangement of n stars and N − 1 bars gives one
nondecreasing sequence of n numbers.

Conversely, we can take any nondecreasing sequence of n numbers and combine it with
the full set of numbers {1, 2, 3, . . . , N} to form a set of n+N numbers. Now rearrange these
numbers in a nondecreasing order. Put a bar between consecutive distinct numbers in this
set and a star between consecutive equal numbers in this set. Note that the number to the
right of each star is an element of the original n-number sequence. This shows that any
nondecreasing sequence of n numbers corresponds to an arrangement of n stars and N − 1
bars.

Combining the two paragraphs above, we now know that the number of non-decreasing
sequences is the same as the number of arrangement of n stars and N − 1 bars, which is(
n+N−1

n

)
.

Remark 1 : There is another method— which will not be discussed here, but can
be inferred by finding the pattern of the sums that lead to the number of non-decreasing
sequences as we increase the value of n— that would interestingly give the number of non-
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decreasing sequences as
N∑

kn−1=1

· · ·
k3∑

k2=1

k2∑
k1=1

k1.

This sum can be simplified into
(
n+N−1

n

)
by the “parallel summation formula” which is

well-known but we didn’t discuss in class.
Remark 2 : It is tempting to apply the technique that we used in class to turn the

“order sampling” into “unordered sampling”. That technique was for the sampling without
replacement. Let’s look back at how we turned the “ordered sampling without replacement”
into “unordered sampling without replacement”. Recall that there are (N)n distinct samples
for “ordered sampling without replacement”. When we switch to the “unordered” case, we
see that many of the original samples from the “ordered sampling without replacement” are
regarded as the same in the “unordered” case. In fact, we can form “groups” of samples
whose members are regarded as the same in the “unordered” case. We can then count the
number of groups. In class, we found that the size of any individual group can be calculated
easily from permuting the elements in a sample and hence there are n! members in each
group. This leads us to conclude that there are (N)n/n! =

(
N
n

)
groups.

We are in a seemingly similar situation when we want to turn the “ordered sampling with
replacement” into “unordered sampling with replacement”. We first start with Nn distinct
samples from “ordered sampling with replacement”. Now, we again separate these samples
into groups. Let’s consider an example where n = 3. Then sequences “1 1 2”, “1 2 1”, and
“2 1 1” are put together in the same group in the “unordered” case. Note that the size of
this group is 3. The sequences “1 2 3”, “1 3 2”, “2 1 3”, “2 3 1”, “3 1 2”, and “3 2 1” are in
another group. Note that the size of this group is 6. Therefore, the group sizes are not the
same and hence we can not find the number of groups by Nn/(group size) as in the sampling
without replacement discussed in the previous paragraph.
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Problem 1.

(a) Suppose that P (A|B) = 0.4 and P (B) = 0.5 Determine the following:

(i) P (A ∩B)

(ii) P (Ac ∩B)

[Montgomery and Runger, 2010, Q2-105]

(b) Suppose that P (A|B) = 0.2, P (A|Bc) = 0.3 and P (B) = 0.8 What is P (A)? [Mont-
gomery and Runger, 2010, Q2-106]

Solution :

(a)

(i) By definition, P (A|B) = P (A∩B)
P (B)

. Therefore,

P (A ∩B) = P (A|B)P (B) = 0.4× 0.5 = 0.2.

(ii) P (Ac ∩B) = P (B \ A) = P (B)− P (A ∩B) = 0.5− 0.2 = 0.3.

Alternatively, one can apply the property P (Ac|B) = 1− P (A|B) to get

P (Ac ∩B) = P (Ac|B)P (B) = (1− P (A|B))P (B) = (1− 0.4)× 0.5 = 0.3.

(b) Method 1: By definition, P (A|B) = P (A∩B)
P (B)

. Therefore,

P (A ∩B) = P (A|B)P (B) = 0.2× 0.8 = 0.16.

Next, from P (B) = 0.8, we know that

P (Bc) = 1− P (B) = 1− 0.8 = 0.2.

By definition, P (A|Bc) = P (A∩Bc)
P (Bc)

. Therefore,

P (A ∩Bc) = P (A|Bc)P (Bc) = 0.3× 0.2 = 0.06.

Hence, P (A) = P (A ∩B) + P (A ∩Bc) = 0.16 + 0.16 = 0.22.
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Method 2: By the total probability formula, P (A) = P (A|B)P (B)+P (A|Bc)P (Bc) =
0.2× 0.8 + 0.3× (1− 0.8) = 0.22. .

Method 3: For those who are not seeking a “smart” way to solve this question, we
can try the following:

Note that when we have two events, the sample space is always partitioned into four
events: A ∩ B, Ac ∩ B, A ∩ Bc, and Ac ∩ Bc. (It might be helpful to draw the Venn
diagram here.) Let’s define their probabilities as p1, p2, p3, and p4, respectively. We
are given three conditions which can then be turned into three equations. There is also
one extra condition that p1 + p2 + p3 + p4 = 1. Therefore, we have four equations with
four unknowns. Applying some high-school algebra, we should be able to solve for p1,
p2, p3, and p4. With these, we can calculate probability of any event. For example,
P (A) = p1 + p3.

Problem 2. Suppose that for the general population, 1 in 5000 people carries the human
immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or
negative (-) response. Suppose the test gives the correct answer 99% of the time.

(a) What is P (−|H), the conditional probability that a person tests negative given that
the person does have the HIV virus?

(b) What is P (H|+), the conditional probability that a randomly chosen person has the
HIV virus given that the person tests positive?

Solution :

(a) Because the test is correct 99% of the time,

P (−|H) = P (+|Hc) = 0.01 .

(b) Using Bayes’ formula, P (H|+) = P (+|H)P (H)
P (+)

, where P (+) can be evaluated by the total
probability formula:

P (+) = P (+|H)P (H) + P (+|Hc)P (Hc) = 0.99× 0.0002 + 0.01× 0.9998.

Plugging this back into the Bayes’ formula gives

P (H|+) =
0.99× 0.0002

0.99× 0.0002 + 0.01× 0.9998
≈ 0.0194 .

Thus, even though the test is correct 99% of the time, the probability that a random
person who tests positive actually has HIV is less than 2%. The reason this probability
is so low is that the a priori probability that a person has HIV is very small.
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Problem 3. Due to an Internet configuration error, packets sent from New York to Los
Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is
routed through El Paso, suppose it has conditional probability 1/3 of being dropped. Given
that a packet is not routed through El Paso, suppose it has conditional probability 1/4 of
being dropped. [Gubner, 2006, Ex.1.20]

(a) Find the probability that a packet is dropped.
Hint: Use total probability theorem.

(b) Find the conditional probability that a packet is routed through El Paso given that it
is not dropped.
Hint: Use Bayes’ theorem.

Solution : To solve this problem, we use the notation E = {routed through El Paso}
and D = {packet is dropped}. With this notation, it is easy to interpret the problem as
telling us that

P (D|E) = 1/3, P (D|Ec) = 1/4, and P (E) = 3/4.

(a) By the law of total probability,

P (D) = P (D|E)P (E) + P (D|Ec)P (Ec) = (1/3)(3/4) + (1/4)(1− 3/4)

= 1/4 + 1/16 = 5/16 = 0.3125.

(b) P (E|Dc) = P (E∩Dc)
P (Dc)

= P (Dc|E)P (E)
P (Dc)

= (1−1/3)(3/4)
1−5/16 =

8

11
≈ 0.7273.

Problem 4. You have two coins, a fair one with probability of heads 1
2

and an unfair one
with probability of heads 1

3
, but otherwise identical. A coin is selected at random and tossed,

falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003,
Q7.28]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively.

Because the coin is selected at random, the probability P (F ) of selecting the fair coin is
P (F ) = 1

2
. For fair coin, the conditional probability P (H|F ) of heads is 1

2
For the unfair

coin, P (U) = 1− P (F ) = 1
2

and P (H|U) = 1
3
.

By the Bayes’ formula, the probability that the fair coin has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 1

2
1
2
× 1

2
+ 1

3
× 1

2

=
1
2

1
2

+ 1
3

=
1

1 + 2
3

=
3

5
.
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Problem 5. You have three coins in your pocket, two fair ones but the third biased with
probability of heads p and tails 1−p. One coin selected at random drops to the floor, landing
heads up. How likely is it that it is one of the fair coins? [Capinski and Zastawniak, 2003,
Q7.29]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively. We are given that

P (F ) =
2

3
, P (U) =

1

3
, P (H|F ) =

1

2
, P (H|U) = p.

By Bayes’ theorem, the probability that one of the fair coins has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 2

3
1
2
× 2

3
+ p× 1

3

=
1

1 + p
.

Alternative Solution : Let F1, F2, U and H be the events that “the selected coin is the
first fair coin”, “the selected coin is the second fair coin”, “the selected coin is unfair”, and
“the coin lands heads up”, respectively.

Because the coin is selected at random, the events F1, F2, and U are equally likely:

P (F1) = P (F2) = P (U) =
1

3
.

For fair coins, the conditional probability of heads is 1
2

and for the unfair coin, the conditional
probability of heads is p:

P (H|F1) = P (H|F2) =
1

2
, P (H|U) = p.

The probability that one of the fair coins has been selected given that it lands heads up is
P (F1 ∪ F2|H). Now F1 and F2 are disjoint events. Therefore,

P (F1 ∪ F2|H) = P (F1|H) + P (F2|H).

By Bayes’ theorem,

P (F1 |H ) =
P (H |F1 )P (F1)

P (H)
and P (F2 |H ) =

P (H |F2 )P (F2)

P (H)
.

Therefore,

P (F1 ∪ F2|H) =
P (H |F1 )P (F1)

P (H)
+
P (H |F2 )P (F2)

P (H)
=

P (H |F1 )P (F1) + P (H |F2 )P (F2)

P (H)
.
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Note that the collection of three events F1, F2, and U partitions the sample space.
Therefore, by the total probability theorem,

P (H) = P (H |F1 )P (F1) + P (H |F2 )P (F2) + P (H |U )P (U) .

Plugging the above expression of P (H) into our expression for P (F1 ∪ F2|H) gives

P (F1 ∪ F2|H) =
P (H |F1 )P (F1) + P (H |F2 )P (F2)

P (H |F1 )P (F1) + P (H |F2 )P (F2) + P (H |U )P (U)

=
1
2
× 1

3
+ 1

2
× 1

3
1
2
× 1

3
+ 1

2
× 1

3
+ p× 1

3

=
1

1 + p
.

Extra Questions
Here are some optional questions for those who want more practice.

Problem 6. Someone has rolled a fair dice twice. Suppose he tells you that “one of the
rolls turned up a face value of six”. What is the probability that the other roll turned up a
six as well? [Tijms, 2007, Example 8.1, p. 244]

Hint: Note the followings:

� The answer is not 1
6
.

� Although there is no use of the word “given” or “conditioned on” in this question, the
probability we seek is a conditional one. We have an extra piece of information because
we know that the event “one of the rolls turned up a face value of six” has occurred.

� The question says “one of the rolls” without telling us which roll (the first or the
second) it is referring to.

Solution : Let the sample space be the set {(i, j)|i, j = 1, . . . , 6}, where i and j denote
the outcomes of the first and second rolls, respectively. They are all equally likely; so each
has probability of 1/36. The event of two sixes is given by A = {(6, 6)} and the event
of at least one six is given by B = {(1, 6), . . . , (5, 6), (6, 6), (6, 5), . . . , (6, 1)}. Applying the
definition of conditional probability gives

P (A|B) = P (A ∩B)/P (B) =
1/36

11/36
.

Hence the desired probability is 1/11 .

Problem 7.

(a) Suppose that P (A|B) = 1/3 and P (A|Bc) = 1/4. Find the range of the possible values
for P (A).
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(b) Suppose that C1, C2, and C3 partition Ω. Furthermore, suppose we know that P (A|C1) =
1/3, P (A|C2) = 1/4 and P (A|C3) = 1/5. Find the range of the possible values for
P (A).

Solution : First recall the total probability theorem: Suppose we have a collection of
events B1, B2, . . . , Bn which partitions Ω. Then,

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·P (A ∩Bn)

= P (A |B1 )P (B1) + P (A |B2 )P (B2) + · · ·P (A |Bn )P (Bn)

(a) Note that B and Bc partition Ω. So, we can apply the total probability theorem:

P (A) = P (A |B )P (B) + P (A |Bc )P (Bc) =
1

3
P (B) +

1

4
(1− P (B)) .

You may check that, by varying the value of P (B) from 0 to 1, we can get the value
of P (A) to be any number in the range

[
1
4
, 1
3

]
. Technically, we can not use P (B) = 0

because that would make P (A|B) not well-defined. Similarly, we can not use P (B) =
1 because that would mean P (Bc) = 0 and hence make P (A|Bc) not well-defined.

Therfore, the range of P (A) is

(
1

4
,
1

3

)
.

Note that larger value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) <

1

3
P (B) +

1

3
(1− P (B)) =

1

3
.

Similarly, smaller value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) >

1

4
P (B) +

1

3
(1− P (B)) =

1

4
.

(b) Again, we apply the total probability theorem:

P (A) = P (A |C1 )P (C1) + P (A |C2 )P (C2) + P (A |C3 )P (C3)

=
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) .

Because C1, C2, and C3 partition Ω, we know that P (C1) + P (C2) + P (C3) = 1. Now,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) <

1

3
P (C1) +

1

3
P (C2) +

1

3
P (C3) =

1

3
.

Similarly,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) >

1

5
P (C1) +

1

5
P (C2) +

1

5
P (C3) =

1

5
.
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Therefore, P (A) must be inside
(
1
5
, 1
3

)
.

You may check that any value of P (A) in the range

(
1

5
,
1

3

)
can be obtained by first

setting the value of P (C2) to be close to 0 and varying the value of P (C1) from 0 to 1.

Problem 8. In his book Chances: Risk and Odds in Everyday Life, James Burke says that
there is a 72% chance a polygraph test (lie detector test) will catch a person who is, in
fact, lying. Furthermore, there is approximately a 7% chance that the polygraph will falsely
accuse someone of lying. [Brase and Brase, 2011, Q4.2.26]

(a) If the polygraph indicated that 30% of the questions were answered with lies, what
would you estimate for the actual percentage of lies in the answers?

(b) If the polygraph indicated that 70% of the questions were answered with lies, what
would you estimate for the actual percentage of lies?

Solution : Let AT and AL be the events that “the person actually answers the truth”
and “the person actually answers with lie”, respectively. Also, let PT and PL be the events
that “the polygraph indicates that the answer is the truth” and “the polygraph indicates
that the answer is a lie”, respectively.

We know, from the provided information, that P (PL|AL) = 0.72 and that P (PL|AT ) =
0.07.

Applying the total probability theorem, we have

P (PL) = P (PL|AL)P (AL) + P (PL|AT )P (AT )

= P (PL|AL)P (AL) + P (PL|AT )(1− P (AL)).

Solving for P (AL), we have

P (AL) =
P (PL)− P (PL |AT )

P (PL |AL)− P (PL |AT )
=

P (PL)− 0.07

0.72− 0.07
=

P (PL)− 0.07

0.65
.

(a) Plugging in P (PL) = 0.3, we have P (AL) = 0.3538 .

(b) Plugging in P (PL) = 0.7, we have P (AL) = 0.9692 .

Problem 9. Software to detect fraud in consumer phone cards tracks the number of metropoli-
tan areas where calls originate each day. It is found that 1% of the legitimate users originate
calls from two or more metropolitan areas in a single day. However, 30% of fraudulent users
originate calls from two or more metropolitan areas in a single day. The proportion of fraud-
ulent users is 0.01%. If the same user originates calls from two or more metropolitan areas in

5-7



EES 315 HW Solution 5 — Due: Not Due 2020/1

a single day, what is the probability that the user is fraudulent? [Montgomery and Runger,
2010, Q2-144]

Solution : Let F denote the event of fraudulent user and let M denote the event of
originating calls from multiple (two or more) metropolitan areas in a day. Then,

P (F |M ) =
P (M |F )P (F )

P (M |F )P (F ) + P (M |F c)P (F c)
=

1

1 + P (M |F c)
P (M |F )

× P (F c)
P (F )

=
1

1 +
1

100
30
100

×
9999
104
1

104

=
1

1 + 9999
30

=
30

30 + 9999
=

30

10029
≈ 0.0030 .

Problem 10. An article in the British Medical Journal [“Comparison of Treatment of Re-
nal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879892)] provided the following discussion of success
rates in kidney stone removals. Open surgery (OS) had a success rate of 78% (273/350) while
a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350).
This newer method looked better, but the results changed when stone diameter was con-
sidered. For stones with diameters less than two centimeters, 93% (81/87) of cases of open
surgery were successful compared with only 87% (234/270) of cases of PN. For stones greater
than or equal to two centimeters, the success rates were 73% (192/263) and 69% (55/80)
for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less
successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known
as Simpson’s Paradox) but the hazard still persists today. Explain how open surgery can be
better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]

Solution : First, let’s recall the total probability theorem:

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A |B )P (B) + P (A |Bc )P (Bc) .

We can see that P (A) does not depend only on P (A|B) and P (A |Bc ). It also depends on
P (B) and P (Bc). In the extreme case, we may imagine the case with P (B) = 1 in which
P (A) = P (A|B). At another extreme, we may imagine the case with P (B) = 0 in which
P (A) = P (A|Bc). Therefore, depending on the value of P (B), the value of P (A) can be
anywhere between P (A|B) and P (A|Bc).

Now, let’s consider events A1, B1, A2, and B2. Let P (A1|B1) = 0.93 and P (A1|Bc
1) =

0.73. Therefore, P (A1) ∈ [0.73, 0.93]. On the other hand, let P (A2|B2) = 0.87 and
P (A2|Bc

2) = 0.69. Therefore, P (A2) ∈ [0.69, 0.87]. With small value of P (B1), the value of
P (A1) can be 0.78 which is closer to its lower end of the bound. With large value of P (B2),
the value of P (A2) can be 0.83 which is closer to its upper end of the bound. Therefore,
even though P (A1|B1) > P (A2|B2) = 0.87 and P (A1|Bc

1) > P (A2|Bc
2), it is possible that

P (A1) < P (A2).
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In the context of the paradox under consideration, note that the success rate of PN with
small stones (87%) is higher than the success rate of OS with large stones (73%). Therefore,
by having a lot of large stone cases to be tested under OS and also have a lot of small stone
cases to be tested under PN, we can create a situation where the overall success rate of PN
comes out to be better then the success rate of OS. This is exactly what happened in the
study as shown in Table 5.1.

Applied Statistics and Probability for Engineers, 5th edition 15 January 2010 

2-19 

 P(R)= P(R|N)P(N) + P(R|A)P(A) + P(R|W)P(W) 
        = (0.02)(0.25) + (0.03) (0.6) + (0.06)(0.15) 
        = 0.032 
 
2-110. Let A denote the event that a respondent is a college graduate and let B denote the event that an individual votes for 

Bush.  
P(B) = P(A)P(B|A) + P(A’)P(B|A’) = (0.38 × 0.52) + (0.62 × 0.5) = 0.0613 

 
2-111. a) (0.88)(0.27) = 0.2376 

b)  (0.12)(0.13+0.52) = 0.0.078 
 

2-112.      a)P = 0.13×0.73=0.0949 
b)P = 0.87× (0.27+0.17)=0.3828 
 

2-113. Let A and B denote the event that the first and second part selected has excessive shrinkage, respectively. 
 a) P(B)= P( B A )P(A) + P(B A ')P(A') 
             = (4/24)(5/25) + (5/24)(20/25) = 0.20 
 b) Let C denote the event that the third part selected has excessive shrinkage. 
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2-114. Let A and B denote the events that the first and second chips selected are defective, respectively.  
 a) P(B) = P(B|A)P(A) + P(B|A')P(A') = (19/99)(20/100) + (20/99)(80/100) = 0.2 

 b) Let C denote the event that the third chip selected is defective. 
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2-115. 
 

Open surgery      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 192 71 263 75% 73% 
small stone 81 6 87 25% 93% 

overall summary 273 77 350 100% 78% 
      

PN      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 55 25 80 23% 69% 
small stone 234 36 270 77% 87% 

overall summary 289 61 350 100% 83% 
 

The overall success rate depends on the success rates for each stone size group, but also the probability of the groups. It 
is the weighted average of the group success rate weighted by the group size as follows 

P(overall success) = P(success| large stone)P(large stone)) + P(success| small stone)P(small stone). 
For open surgery, the dominant group (large stone) has a smaller success rate while for PN, the dominant group (small 
stone) has a larger success rate. 

 
2-116. P(A) = 112/204 = 0.5490, P(B) = 92/204 = 0.4510 

Table 5.1: Success rates in kidney stone removals.

5-9


	EES315_HW_2020_1_Sol
	EES315_HW_2020_2_Sol
	EES315_HW_2020_3_Sol
	EES315_HW_2020_4_Sol
	EES315_HW_2020_5_Sol

