Sirindhorn International Institute of Technology
 Thammasat University at Rangsit

School of Information, Computer and Communication Technology
ECS 455: Problem Set 7

Semester/Year: 2/2014
Course Title: Mobile Communications
Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs455/

Due date: Not due

1. Consider the list of Walsh sequence of order 64 provided in [Lee and Miller, 1998, Table 5.2].

Table 5.2 Walsh functions of order 64 (indexed by zero crossings)

00 0000000000000000000000000000000011111111111111111111111111111111 000000000000000111111111111111111111111111111110000000000000000 0000000000000000111111111111111100000000000000001111111111111111 0000000011111111111111110000000000000000111111111111111100000000 0000000011111111111111110000000011111111000000000000000011111111 0000000011111111000000001111111111111111000000001111111100000000 0000000011111111000000001111111100000000111111110000000011111111 0000111111110000000011111111000000001111111100000000111111110000 0000111111110000000011111111000011110000000011111111000000001111 0000111111110000111100000000111111110000000011110000111111110000 0000111111110000111100000000111100001111111100001111000000001111 0000111100001111111100001111000000001111000011111111000011110000 0000111100001111111100001111000011110000111100000000111100001111 0000111100001111000011110000111111110000111100001111000011110000 0000111100001111000011110000111100001111000011110000111100001111 0011110000111100001111000011110000111100001111000011110000111100 0011110000111100001111000011110011000011110000111100001111000011 0011110000111100110000111100001111000011110000110011110000111100 0011110000111100110000111100001100111100001111001100001111000011 0011110011000011110000110011110000111100110000111100001100111100 0011110011000011110000110011110011000011001111000011110011000011 0011110011000011001111001100001111000011001111001100001100111100 0011110011000011001111001100001100111100110000110011110011000011 0011001111001100001100111100110000110011110011000011001111001100 0011001111001100001100111100110011001100001100111100110000110011 0011001111001100110011000011001111001100001100110011001111001100 0011001111001100110011000011001100110011110011001100110000110011 0011001100110011110011001100110000110011001100111100110011001100 0011001100110011110011001100110011001100110011000011001100110011 0011001100110011001100110011001111001100110011001100110011001100 0011001100110011001100110011001100110011001100110011001100110011

[^0]In class, we observed that one of the sequenced is missing.
Find the content of that sequence.
Hint: Use MATLAB.
2. Select the terms (provided at the end of the problem) to complete the following description of OFDM systems:

Wireless systems suffer from \qquad problem. Equalization can be used to mitigate this problem. Another important technique that works effectively in wireless systems is OFDM. The general idea is to \qquad the symbol or bit time so that it is \qquad compared with the channel delay spread. To do this, we separate the original data stream into multiple parallel substreams and transmit the substreams via different carrier frequencies, creating parallel subchannels. This is called
\qquad . In such direct implementation, there are two new problems to solve: bandwidth inefficiency and complexity of the transceivers. The inefficient use of bandwidth is caused by the need of \qquad between adjacent subchannels. Bandwidth efficiency can be improved by utilizing \qquad . The computational complexity of the transceivers is solved by the use of \qquad _.

Here are the terms to use. Some term(s) is/are not used.

- FFT and IFFT
- FDM
- multipath fading
- local oscillators
- guard bands
- guard times
- reduce
- increase
- small
- large
- spectral efficiency
- orthogonality

3. Evaluate the following expressions by hand. Show your calculation. (You may use MATLAB to check your answers later.)
a. $\operatorname{DFT}\left\{\left[\begin{array}{ll}3 & -1\end{array}\right]\right\}$
b. $\quad \operatorname{DFT}\left\{\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\right\}$
c. $\operatorname{IDFT}\left\{\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\right\}$
d. $\operatorname{DFT}\left\{\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]\right\}$
e. $\left[\begin{array}{lll}1 & 2 & -1\end{array}\right] *\left[\begin{array}{lll}2 & 1 & -2\end{array}\right]$
f. $\left[\begin{array}{lll}1 & 2 & -1\end{array}\right] \circledast\left[\begin{array}{lll}2 & 1 & -2\end{array}\right]$
g. $\quad\left[\begin{array}{llll}1 & 2 & -1 & 0\end{array}\right] \circledast\left[\begin{array}{llll}2 & 1 & -2 & 0\end{array}\right]$
h. $\left[\begin{array}{lllll}1 & 2 & -1 & 0 & 0\end{array}\right] \circledast\left[\begin{array}{lllll}2 & 1 & -2 & 0 & 0\end{array}\right]$
4. In this question, we will consider an OFDM system in discrete time. The channel is characterized by $\mathbf{h}=\left[\begin{array}{ll}2 & -1\end{array}\right]$. We would like to transmit $\mathbf{S}=\left[\begin{array}{llllllll}1 & -1 & 2 & 1 & -1 & 2 & 1 & 2\end{array}\right]$ of data across this channel using OFDM. For simplicity, we will assume that there is no noise. Let $N=4$ be the length of each OFDM symbol.
a. Find the transmitted vector \mathbf{x}. (Apply IFFT with scaling by \sqrt{N}. Then add cyclic prefix.) To reduce the overhead, the cyclic prefix should be as short as possible.
b. The received vector is $\mathbf{y}=\mathbf{x} * \mathbf{h}$. (Note that this is a regular convolution.) Find \mathbf{y}.
c. Find \mathbf{H} which is the FFT of the zero-padded \mathbf{h}.
d. Remove the "irrelevant parts" from \mathbf{y}. Then apply FFT with scaling by $1 / \sqrt{N}$. Finally, use the corresponding property in frequency domain of the circular convolution (in time) for DFT to recover the original data \mathbf{S} from \mathbf{y}.
5. Recall that the baseband OFDM modulated signal can be expressed as

$$
s(t)=\sum_{k=0}^{N-1} S_{k} \frac{1}{\sqrt{N}} 1_{\left[0, T_{s}\right]}(t) \exp \left(j \frac{2 \pi k t}{T_{s}}\right)
$$

where $S_{0}, S_{1}, \ldots, S_{N-1}$ are the (potentially complex-valued) messages.
Let $T_{s}=1[\mathrm{~ms}], N=8$, and

$$
\left(S_{0}, S_{1}, \ldots, S_{N-1}\right)=(1-j, 1+j, 1,1-j,-1-j, 1,1-j,-1+j)
$$

a. Use MATLAB ifft command to plot $\operatorname{Re}\{s(t)\}$ for $0 \leq t \leq T_{s}$.

Hint: Use oversampling with large value of L .
b. Let

$$
\begin{array}{ll}
\text { i. } & a(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \operatorname{Re}\left\{S_{k}\right\} \cos \left(\frac{2 \pi k t}{T_{s}}\right) \\
\text { ii. } & b(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \operatorname{Im}\left\{S_{k}\right\} \sin \left(\frac{2 \pi k t}{T_{s}}\right)
\end{array}
$$

What is the relationship between $a(t), b(t)$, and $\operatorname{Re}\{s(t)\}$?
c. Let

$$
s_{2}(t)=\sum_{k=0}^{N-1} S_{k}^{*} \frac{1}{\sqrt{N}} 1_{\left[0, T_{s}\right]}(t) \exp \left(j \frac{2 \pi k t}{T_{s}}\right) .
$$

Note the extra conjugation in $s_{2}(t)$.
What is the relationship between $a(t), b(t)$, and $\operatorname{Re}\left\{s_{2}(t)\right\}$?
d. Use MATLAB to plot $a(t)$ and $b(t)$ for $0 \leq t \leq T_{s}$.

Use the relationships found in parts (b) and (c).

[^0]: $\boldsymbol{W}_{32} \quad 0110011001100110011001100110011001100110011001100110011001100110$ $\boldsymbol{W}_{33} \quad 0110011001100110011001100110011010011001100110011001100110011001$ $\boldsymbol{W}_{34} \quad 0110011001100110100110011001100110011001100110010110011001100110$ $\boldsymbol{W}_{35} \quad 0110011001100110100110011001100101100110011001101001100110011001$ \boldsymbol{W}_{36}
 W_{37}
 \boldsymbol{W}_{38}
 \boldsymbol{W}_{39}
 W_{40}
 W_{41}
 W_{43}
 W_{44}
 W_{45}
 W_{46}
 W_{55} 0110011010011001100110010110011001100110100110011001100101100110 0110011010011001100110010110011010011001011001100110011010011001 0110011010011001011001101001100110011001011001101001100101100110 0110011010011001011001101001100101100110100110010110011010011001 0110100110010110011010011001011001101001100101100110100110010110 0110100110010110011010011001011010010110011010011001011001101001 0110100110010110100101100110100101101001100101101001011001101001 0110100101101001100101101001011001101001011010011001011010010110 0110100101101001100101101001011010010110100101100110100101101001 0110100101101001011010010110100110010110100101101001011010010110 0110100101101001011010010110100101101001011010010110100101101001 0101101001011010010110100101101001011010010110100101101001011010 0101101001011010010110100101101010100101101001011010010110100101 0101101001011010101001011010010110100101101001010101101001011010 0101101001011010101001011010010101011010010110101010010110100101 0101101010100101101001010101101001011010101001011010010101011010 0101101010100101101001010101101010100101010110100101101010100101 0101101010100101010110101010010110100101010110101010010101011010 0101101010100101010110101010010101011010101001010101101010100101 0101010110101010010101011010101001010101101010100101010110101010 0101010110101010010101011010101010101010010101011010101001010101 0101010110101010101010100101010110101010010101010101010110101010 0101010110101010101010100101010101010101101010101010101001010101 0101010101010101101010101010101001010101010101011010101010101010 0101010101010101101010101010101010101010101010100101010101010101 0101010101010101010101010101010110101010101010101010101010101010 01

