Sirindhorn International Institute of Technology
 Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 455: Problem Set 5

Semester/Year: 2/2011
Course Title: Mobile Communications
Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs455/
Due date: Not due

1. Recall that the baseband OFDM modulated signal can be expressed as

$$
s(t)=\sum_{k=0}^{N-1} S_{k} \frac{1}{\sqrt{N}} 1_{\left[0, T_{s}\right]}(t) \exp \left(j \frac{2 \pi k t}{T_{s}}\right)
$$

where $S_{0}, S_{1}, \ldots, S_{N-1}$ are the (potentially complex-valued) messages.
Let $T_{s}=1$ [ms], $N=8$, and

$$
\left(S_{0}, S_{1}, \ldots, S_{N-1}\right)=(1-j, 1+j, 1,1-j,-1-j, 1,1-j,-1+j)
$$

a. Use MATLAB ifft command to plot $\operatorname{Re}\{s(t)\}$ for $0 \leq t \leq T_{s}$.
b. Let
i. $\quad a(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \operatorname{Re}\left\{S_{k}\right\} \cos \left(\frac{2 \pi k t}{T_{s}}\right)$
ii. $\quad b(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \operatorname{Im}\left\{S_{k}\right\} \sin \left(\frac{2 \pi k t}{T_{s}}\right)$

What is the relationship between $a(t), b(t)$, and $\operatorname{Re}\{s(t)\}$?
c. Let

$$
s_{2}(t)=\sum_{k=0}^{N-1} S_{k}^{*} \frac{1}{\sqrt{N}} 1_{\left[0, T_{s}\right]}(t) \exp \left(j \frac{2 \pi k t}{T_{s}}\right)
$$

Note the extra conjugation in $s_{2}(t)$.
What is the relationship between $a(t), b(t)$, and $\operatorname{Re}\left\{s_{2}(t)\right\}$?
d. Use MATLAB to plot $a(t)$ and $b(t)$ for $0 \leq t \leq T_{s}$.
2. Consider the discrete-time complex FIR channel model

$$
y[n]=\left\{h^{*} x\right\}[n]+w[n]=\sum_{m=0}^{2} h[m] x[n-m]+w[n]
$$

where $w[n]$ is zero-mean additive Gaussian noise.
In this question, assume that $h[n]$ has unit energy and that $H(z)$ has two zeros at $z_{1}=\rho e^{j \frac{2 \pi}{3}}$ and $z_{2}=\frac{1}{\rho}$ where $\rho<1$.
a. The information given above implies that

$$
h[k]=\frac{1}{\sqrt{E_{h_{u n}}}} h_{u n}[k] \text { and } H(z)=\frac{1}{\sqrt{E_{h_{u n}}}} H_{u n}(z)
$$

where

$$
\begin{gathered}
h_{u n}[k]=\delta[k]-\left(z_{1}+z_{2}\right) \delta[k-1]+z_{1} z_{2} \delta[k-2], \\
H_{u n}(z)=\left(1-z_{1} z^{-1}\right)\left(1-z_{2} z^{-1}\right)=1-\left(z_{1}+z_{2}\right) z^{-1}+z_{1} z_{2} z^{-2},
\end{gathered}
$$

and

$$
E_{h_{u m}}=1^{2}+\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}
$$

Plot $\left|H\left(e^{j \omega}\right)\right|=|H(z)|_{z=e^{j \omega}} \mid$ in the range $\omega=0: \frac{2 \pi}{80}: 2 \pi$ for $\rho=0.5$ and 0.99.
See Appendix A for the discussion on how I get $h[k]$ and $H(z)$.
b. For OFDM system with block size $N=8$, find the corresponding channel gains $H_{k}=\left.H(z)\right|_{z=e^{p \frac{2 \pi}{N} k}}, k=0,1,2, \ldots, N-1$ for $\rho=0.5$ and 0.99 . In particular, complete the following table.

Ch \# k	$\rho=0.5$		$\rho=0.99$	
	H_{k}	$\left\|H_{k}\right\|$	H_{k}	$\left\|H_{k}\right\|$
0	$-0.5455+0.1890 \mathrm{i}$	0.5774	$-0.0087+0.0050 \mathrm{i}$	0.0100
1				
2				
3				
4	$0.9820+0.5669 \mathrm{i}$	1.1339	$0.5860+0.9949 \mathrm{i}$	1.1547
5				
6				
7				

3. OFDM simulation: Write a MATLAB code to perform the following operations
a. Generate 10,000 OFDM blocks, each is an 8 dimensional QPSK vector. Each element of the vector is independently and randomly chosen from the constellation set $M=\{1+j, 1-j,-1+j,-1-j\}$.
b. Perform the MATLAB's IFFT to each vector. Multiply the result by \sqrt{N}. (See Q1a for the reason why we need to multiply by \sqrt{N}.)
c. Add the cyclic prefix to each block and transmit over the FIR channel defined in the previous question. Assume $w[n] \equiv 0$. Consider two cases: $\rho=0.5$ and 0.99 .
d. At the receiver, remove the cyclic prefix and perform the FFT to get R_{k}. Scale the results by $1 / \sqrt{N}$.
e. Assume that the receiver knows H_{k}. Detect the transmitted symbols at each channel. When there is no noise, you have $R_{k}=H_{k} S_{k}$. Therefore, $S_{k}=\frac{R_{k}}{H_{k}}$. $\underline{\text { Record }}$ the symbol error rates (SER) for each channel.
Remark: All of them should be 0 in this question. The goal of this problem is to make you that you understand the OFDM system enough to write down MATLAB code for it.
4. (Difficult) Repeat Question 3. However, in this question, the channel noise is generally nonzero. $w[n]$ is now i.i.d. complex-valued Gaussian noise. Its real and imaginary parts are i.i.d. zero-mean Gaussian with variance $N_{0} / 2$ where $N_{0}=1$.
For the decoder, use the ML (maximum likelihood) detector to decode back S_{k}. To do this, first calculate $\frac{R_{k}}{H_{k}}$. Then, find \hat{S}_{k} which is defined to be the closest message s in the constellation to $\frac{R_{k}}{H_{k}}$.
a. Complete the following table. The H_{k} can be copied from the Table in Q2b.

	$\rho=0.5$		$\rho=0.99$	
Ch \# k	$\left\|H_{k}\right\|$	SER	$\left\|H_{k}\right\|$	SER
0				
1				
2				
3				
4				
5				
6				
7				

Note that a symbol is counted as decoded correctly if both real and imaginary parts are decoded correctly.
b. What is the relationship between $\left|H_{k}\right|$ and SER.

Appendix A

The channel h has two zeros at $z_{1}=\rho e^{j \frac{2 \pi}{3}}$ and $z_{2}=\frac{1}{\rho}$.
Thus, before normalized to unit energy, we have

$$
H_{u n}(z)=\left(1-z_{1} z^{-1}\right)\left(1-z_{2} z^{-1}\right)=1-\left(z_{1}+z_{2}\right) z^{-1}+z_{1} z_{2} z^{-2} .
$$

Inverse Z-transform gives

$$
h_{u n}[k]=\delta[k]-\left(z_{1}+z_{2}\right) \delta[k-1]+z_{1} z_{2} \delta[k-2] .
$$

The energy of $h_{u n}[k]$ is $E_{h_{u t n}}=1^{2}+\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$.
So,

$$
h[k]=\frac{1}{\sqrt{E_{h_{u n}}}} h_{u n}[k] \text { and } H(z)=\frac{1}{\sqrt{E_{h_{u m}}}} H_{u n}(z)
$$

Appendix B

When there is some zero-mean Gaussian noise, $R_{k}=H_{k} S_{k}+W_{k}$ where W_{k} is the noise (in the frequency domain). Therefore,

$$
\frac{R_{k}}{H_{k}}=S_{k}+\frac{W_{k}}{H_{k}} .
$$

New Noise
Because the noise is Gaussian and zero-mean, the noise will most-likely not take $\frac{R_{k}}{H_{k}}$ too far from S_{k}. Therefore, the ML detector gives

$$
\hat{S}_{k}=\underset{s \in M}{\arg \min }\left\{\left\|R_{k}-s H_{k}\right\|\right\}=\underset{s \in M}{\arg \min }\left\{\left\|\frac{R_{k}}{H_{k}}-s\right\|\right\},
$$

i.e. it detects S_{k} as the closest message s in the constellation to $\frac{R_{k}}{H_{k}}$. Of course, the noise can be large and shift $\frac{R_{k}}{H_{k}}$ too far from the original S_{k}. Therefore, \hat{S}_{k} may be different from S_{k}. This is when symbol error occurs.

