Sirindhorn International Institute of Technology
 Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 455: Solution for Problem Set 4

Semester/Year: 2/2011
Course Title: Mobile Communications
Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs455/

Due date: Mar 29, 2012 (Thursday)

1. Consider Globa//5ystem for Mobile (GSM), which is a TDMA/FDD/system that uses 25 MHz for the forward link, which is broken into radio channels of 200 kHz . If 8 speech channels are supported on a single radio channel, and if no guard band is assumed, find the number of simultaneous users that can be accommodated in GSM. \leftarrow Here, we ignore the gain from

Solution
frequency reuse.

$$
\overbrace{\frac{25 \times 10^{6}}{200 \times 10^{3}}}^{\text {number of radio channels }} \times 8=1000 \text { simultaneous users. } \quad \text { number of speech channels per radio channel) }
$$

2. Draw the complete state diagrams for linear feedback shift registers (LFSRs) using the following polynomials. Does either LFSR generate an m-sequence?

(a) $1+x^{2}+x^{5}$	(b) $1+x+x^{2}+x^{5}$	(c) $1+x+x^{2}+x^{4}+x^{5}$
(a) The LFSR will cycle through the following states:	(b) The LFSR will cycle through one of the cycles of states below. The initial state determine which cycle it will go through. Cycle \#1: Cycle \#4: (01010 Cycle \#5: 11110	(c) The LFSR will cycle through the following states:

The polynomial $1+x^{2}+x^{5}$ and $1+x+x^{2}+x^{4}+x^{5}$ from part (a) and (c) generate m sequences. (Their states go thorough cycle of size $2^{5}-1$)
3. Use any resource, find all primitive polynomials of degree 6 over GF(2). Indicate your reference.
Solution

$$
\begin{aligned}
& \text { Primitive Polynomials } \\
& \hline x^{6}+x^{1}+1 \\
& \mathbf{x}^{6}+x^{5}+x^{2}+x^{1}+1 \\
& \mathbf{x}^{6}+x^{5}+x^{3}+x^{2}+1 \\
& x^{6}+x^{4}+x^{3}+x^{1}+1 \\
& x^{6}+x^{5}+x^{4}+x^{1}+1 \\
& x^{6}+x^{5}+1
\end{aligned}
$$

Source: http://www.theory.cs.uvic.ca/~cos/gen/poly.html
4. See the hand-written solution at the end.
5. In CDMA, each bit time is subdivided into m short intervals called chips. We will use 8 chips/bit for simplicity. Each station is assigned a unique 8-bit code called a chip-sequence. To transmit a 1 bit, a station sends its chip sequence. To transmit a 0 bit, it sends the one's complement ${ }^{1}$ of its chip sequence.
Here are the binary chip sequences for four stations:
A: 00011011
B: 00101110
C: 01011100
D: 01000010
For pedagogical purposes, we will use a bipolar notation with binary 0 being $\mathbf{- 1}$ and binary 1 being +1. In which case, during each bit time, a station can transmit a 1 by sending its chip sequence, it can transmit a 0 by sending the negative of its chip sequence, or it can be silent and transmit nothing. We assume that all stations are synchronized in time, so all chip sequences begin at the same instant.
When two or more stations transmit simultaneously, their bipolar signals add linearly.
a. Suppose that A, B, and C are simultaneously transmitting 0 bits. What is the resulting (combined) bipolar chip sequence?
b. Suppose the receiver gets the following chips: $(-1+1-3+1-1-3+1+1)$.

Which stations transmitted, and which bits did each one send?

Solution

```
%Chip sequences
C = [0 0 0 1 1 0 1 1; 0 0 1 0 1 1 1 1 0; 0 1 0 1 1 1 1 1 0 0; 0 1 0 0 0 0 0 1 0)];
C = 2*C-1; %Change to bipolar form
```

[^0]```
% Part a
m = [-1 -1 -1 0] %message to transmit
x = % % %%%%%%%%%HELP ME%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part b
r = [lllllllllll
m_decoded = 1/8* %%%%%%%%%%HELP ME%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%This gives [mA mB mC mD]' in bipolar form;
%The value is l if l was transmitted. The value is 0 if nothing was
%transmitted. The value is -1 if 0 was transmitted.
```

Use the above MATLAB code with $x=m^{*} C$; and $m \_d e c o d e d=\left(C^{*} r^{\prime}\right) / 8$;
(a) $\left[\begin{array}{lllllll}3 & 1 & 1 & -1 & -3 & -1 & -1\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & -1 & 0 & 1\end{array}\right]^{\prime} ;$ Hence, $A$ and $D$ sent 1 bits, $B$ sent a 0 bit, and $C$ was silent.

We will try to find waveforms that simply oscillate between positive and negative values:


Now, to make it orthogonal to $c_{1}(t)$, the positive portion of the graph must be equal to the negative portion of the graph. (So, the above waveform does not work.)

It should also be orthogonal to $C_{2}(t)$.
One way to make this happen is to divide the interval $[0, T]$ into many parts, say 4 parts.


To ensure orthogonality, we may require and sections (1) and (4) to be multiplied by the save sign sections (2) and (3) to be multiplied by the same sign. From this, there are 4 options
(1),(4) $\times ">0 "$
(2), (3) $x ">0 "$
(1),(4) $x "<0 "$
(2).(3) $x "<0 "$

not orthogonal to $c_{1}(t)$
The two new waveforms are orthogonal to both $c_{1}(t)$ and $c_{2}(t)$ but they are not orthogonal to one another.
we will keep only one:

At this point, we have


$$
\int_{0}^{T} c_{1}(t) c_{3}(t) d t=\int_{0}^{T} c_{2}(t) c_{3}(t) d t=0
$$

To find $c_{4}(t)$,
we may have to further divide the interval
To do this,
an easy way is to split each section into positive and negative sub-section:

$\uparrow \ldots$ ぃ $\rceil \ldots \Gamma$

$$
[\text { can be }] \text { or } I
$$

This way, the new wave form will be orthogonal to both $c_{1}(t)$ and $c_{3}(t)$.
As drawn, it is not or tho goral to $C_{2}(t)$ so we will need to switch the sign.
Note that $C_{2}(t)$ is symmetric around $\frac{T}{2}$.
Hence, our $C_{4}(t)$ will be " " as well; so that their produce et will still hove equal positive and negative areas.
One such option is:


The final step is to check that

$$
\left\{\begin{array}{l}
\int_{0}^{T} c_{1}(t) c_{2}(t) d t=\int_{0}^{T} c_{1}(t) c_{3}(t) d t=\int_{0}^{T} c_{1}(t) c_{4}(t) d t=0 \\
\int_{0}^{T} c_{2}(t) c_{3}(t) d t=\int_{0}^{T} c_{2}(t) c_{4}(t) d t=\int_{0}^{T} c_{3}(t) c_{4}(t) d t=0 .
\end{array}\right.
$$

This is given to be $=0$.
The other integrations are $=0$ by construction.


[^0]:    ${ }^{1}$ You should have seen the "one's complement" operation in your "digital circuits" class.

