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1. (MATLAB Simulation) In this question, we will explore the Poisson process using discrete 

time approximation as discussed in class.  We consider a Poisson process from time 0 to 

time T = 1000. The time unit is irrelevant in this simulation. However, to make the question 

explicit, we will take the time unit to be in hour. The arrival rate (or the call request rate) is 

30   arrivals per hour. By using the discrete time approximation, we will divide the time 

interval into n = 1,000,000 slots. 

a. As shown in class, the number of arrivals in the slots can be approximated by i.i.d. 

Bernoulli random variables with probability 1p  of having exactly one arrival. Find 

this 1p . 

b. Generate all n Bernoulli random variables simultaneously using the command:  

pp = binornd(1,p1,1,n) 

c. Let Nk be the total number of arrivals during the interval 
1

,
k k

T T
m m

 


 
 where k = 1, 

2, …, m. In this case, let m = 1,000. As shown in class, the random variables 

1 2, , , mN N N   are i.i.d. Poisson random variables.  

i. What is the mean (expected value) of these Poisson random variables? 

ii. Use MATLAB’s poisspdf function to calculate the probability that 1 30N  . 

iii. Use MATLAB’s poisspdf function to calculate the probability that 

30 30N  . 

iv. What is the probability that 50 10.5N  ? 
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d. We can approximate  1 30P N   by calculating the frequency of occurrence from 

the i.i.d. 
1 2, , , mN N N .   

i. Explain how  

N = sum(reshape(pp,n/m,m)) 

gives 1 2, , , mN N N . 

ii. Let A  be the number of 
1 2, , , mN N N  that take the value 30.  Find A. 

Remark: The variable A in this question is not the same as the variable A in 

the Erlang B formula. 

iii. The frequency of occurrence is 
A

m
. Compare your 

A

m
 with the answer from 

part c.ii and c.iii. 

e. The numbers of slots between the adjacent arrivals (1’s) in the discrete-time 

approximation model are given by 

diff(find(pp==1)) [slots]. 

The corresponding continuous time durations between adjacent arrivals are given by 

W = diff(find(pp==1))*T/n  [hrs]. 

These time durations are called inter-arrival times. Use frequency of occurrence to 

approximate the probability that the inter-arrival time will be greater than 2 

minutes. 

f. As mentioned in class, the inter-arrival times 1 2 3, , ,W W W  are i.i.d. exponential 

random variables. Use MATLAB’s expcdf function to calculate  10 2 minP W  . 

Compare your answer with the answer in the previous part. 

 

2. In this question, we will explore the relationship between exponential random variable and 

geometric random variable. 

a. Start with an exponential random variable X whose mean is 
1


. What is its pdf? 

b. What is the probability that X  is in the interval  ,a b ? 

c. What is the probability that X  is in the interval   1 ,k T kT ? Assume T is a 

positive real number and k is a positive integer. We will denote this probability by 

  1 ,P X k T kT    . 

d. Consider the sequence of number 1 2 3, , ,p p p  where   1 ,kp P X k T kT     . 

Are these kp ’s agrees with a pmf of a geometric random variable? Note that the 
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pmf of a geometric random variable can be expressed as    11 kr r  . Can you find r 

such that the 1 2 3, , ,p p p above satisfies the formula   11 kr r  ? 

 

3. (MATLAB Simulation) In this question, we will explore the Erlang B formula using the 

discrete time approximation. We will use the same Poisson process from the first question 

(Q1). 

a. Find the total number of arrivals during the time 0 to time T = 1000. Denote this 

number by V. What is the your value of V?  

This means there will be V call requests during our time interval of interest. 

b. For each call request in the previous part, we want to find the call durations. These 

durations are assumed to be i.i.d. exponential random variables with mean 
1


= 2 

min. So, we can generate all of the call durations by 

exprnd(2/60,1,V) 

We want to convert these numbers into numbers of slots. So, we find 

D = ceil(exprnd(2/60,1,V)/(T/n)); 

i. Express the pmf of D. Approximate the parameter of this pmf. 

Hint: Use question 2 and the fact that 1xe x    when x is small. 

ii. What is the expected value of D? 

c.  (Difficult) Suppose there are a total of m = 2 channels for this system.  

i. Out of the V call requests, count the number B of blocked calls.  

ii. Compare the number 
B

V
 with the blocking probability from the Erlang B 

formula. 

 

4. Consider a system which has 3 channels. We would like to find the blocking probability via 

the Markov chain method. For each of the following models, draw the Markov chain via 

discrete time approximation. Don’t forget to indicate the transition probabilities on the 

arrows. Assume that the duration of each time slot is 1 millisecond. Then, find (1) the 

steady-state probabilities and (2) the long-term call blocking probability. 

a. Erlang B model: Assume that the total call request rate is 10 calls per hour and the 

average call duration is 12 mins. 

b. Engset model: Assume that there are 5 users. The call request rate for each user is 2 

calls per hour and the average call duration is 12 mins. 
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c. Engset model: Assume that there are 100 users. The call request rate for each user is 

0.1 calls per hour and the average call duration is 12 mins. 

 

5. (Difficult) In class we have seen that the steady-state probabilities for the Engset model are 

given by  

 

0

,

i i

u u

i m
k

u

k

n n
A A

i i
p

n z m n
A

k

   
   
    
 
 
 


, 0 i m  , 

where   
0

,
m

k

k

n
z m n A

k

 
  

 
 .  

a. Express mp  (time congestion) in the form 
 

 

,
1

,
m

z m c n
p

z m n


  .  

What is the value of c? 

Hint: c is an integer. 

b. The blocked call probability is given by 

 

 
0

m

u

b m
k

u

k

n
n m A

m
P

n
n k A

k

 
  

 
 

 
 


 which can be rewritten 

in the form 
 

 
1 2

3 4

,
1

,
b

z m c n c
P

z m c n c

 
 

 
.  

Find 1 2 3 4, , ,c c c c . 

Hint: 1 2 3 4, , ,c c c c  are all integrers. 

c. Suppose 1m n  . Simplify the expression for bP . 

Hint: Your answer should be of the form   
m

g A  for some function g of A.  

 

6. Consider another modification of the M/M/m/m (Erlang B) system. (There are infinite users) 

Assume that there is a queue that can be used to hold all requested call which cannot be 

immediately assigned a channel. This is referred to as an M/M/m/ or simply M/M/m 

system. We will define state k as the state where there are k calls in the system. If k ≤ m, 

then all of these calls are ongoing. If k > m, then m of them are ongoing and k-m of them are 

waiting in the queue. 

Assume that the total call request process is Poisson with rate  and that the call durations 

are i.i.d. exponential random variables with expected value 1/. 
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Also assume that .m



  

a. Draw the Markov chain via discrete time approximation. Don’t forget to indicate the 

transition probabilities on the arrows. 

Hint: there are infinite number of states. The transition probabilities for state k 

which is < m are the same as in the M/M/m/m system. For k m , the transition 

probabilities are given below: 

 

 
k  



m 1 m  

 
Explain why the above transition probabilities make sense.  

b. Find the steady-state probabilities  

c. Find the long-term delayed call probability (the probability that a call request occurs 

when all m channels are busy and thus has to wait). 

Hint: This will be a summation of many steady-state probabilities. When you simplify 

your answer, the final answer should be 

1

0

! 1
!

m

km
m

k

A

A A
A m

m k





 
  

 


. 

 

7. (Markov Chain) The Land of Oz is blessed by many things, but not by good weather. They 

never have two nice days in a row. If they have a nice day, they are just as likely to have 

snow as rain the next day. If they have snow or rain, they have an even chance of having the 

same the next day. If there is change from snow or rain, only half of the time is this a 

change to a nice day. 

a. Draw the Markov chain corresponding to how the weather in the land of Oz changes 

from one day to the next.  

Hint: This Markov chain will have three states: nice (N), snow (S), and rain (R).  

b. Find the steady-state probabilities. 

c. Suppose it is snowing in the land of Oz today. What is the chance that it will be a 

nice day next year (365 days later)? 
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8. Complete the following M/M/m/m description with the following terms: 

(I) Bernoulli  (II) binomial   (III) exponential  

(IV) Gaussian (V) geometric  (VI) Poisson 

 

The Erlang B formula is derived under some assumptions. Two important assumptions 

are (1) the call request process is modeled by a/an ______(A)________ process and (2) 

the call durations are assumed to be i.i.d. ______(B)________ random variables. For the 

call request process, the times between adjacent call requests can be shown to be i.i.d. 

______(C)________ random variables. On the other hand, if we consider non-

overlapping time intervals, the numbers of call requests in these intervals are 

______(D)________ random variables.  

 

In order to analyze or simulate the system described above, we consider slotted time 

where the duration of each time slot is small. This technique shifts our focus from 

continuous-time Markov chain to discrete-time Markov chain. In the limit, for the call 

request process, only one of the two events can happen during any particular slot: 

either (1) there is one new call request or (2) there is no new call request. When the 

slots are small and have equal length, the numbers of new call requests in the slots can 

be approximated by i.i.d. _____(E)_________ random variables. In which case, if we 

count the total number of call requests during n slots, we will get a/an  

_____(F)_________ random variable because it is a sum of i.i.d. _____(E)_________ 

random variables.   

 

When we consider a particular time interval I (not necessarily small), the number of 

slots in this interval will increase as the slots get smaller. In the limit, the number of call 

requests in the time interval I which we approximated by a _____(F)_________ random 

variable before will approach a/an ______(D)________ random variable. 

 

Similarly, if we consider the numbers of slots between adjacent call requests, these 

number will be i.i.d. ______(G)________ random variables. These random variables can 

be thought of as discrete counterparts of the i.i.d. ______(C)________ random variables 

in the continuous-time model. 

 

Some term(s) above is/are used more than once. Some term(s) is/are not used. 

 

 

 


