Q1 Euler's Formula
Thursday, November 11, 2010
2:54 PM

$$
=\frac{1}{2}(\cos (A+B)+\cos (A-B))
$$

we know that

$$
2 a \sin c(2 \pi a f) \xrightarrow{J^{-1}} 1[|t| \leqslant a]
$$

Therefore,

$$
\sin c(2 \pi a f) \xrightarrow{7^{-1}} \frac{1}{2 a} 1[|t| \leqslant a]
$$

Finally,

$$
\sin c^{2}(2 \pi a f) \xrightarrow{\mathcal{F}^{-1}} \frac{1}{2 a^{1}} 1[|t| \leq a] * \frac{1}{2 a} 1[|t| \leq a]
$$

$\begin{array}{cl}\text { In this question, } & =\frac{1}{4 a^{2}}(1[|t| \leqslant a] * 1[|t| \leqslant a]) \\ 2 a=5 . & \end{array}$
So, we can solve this question if we con find the convolution of $1[|t| \leqslant a]$ with itself.
This is also discussed in class:

$$
1[|t| \leqslant a] * 1[|t| \leqslant a]=
$$

Therefore, the plot of $\alpha(t)$ shad be the same as δ but scaled vertically by a factor of $1 / 4 a^{2}$:

For us, $a=\frac{5}{2}$. so, $2 a=5$ and the plot of $\alpha(t)$ is

$$
\sigma(t)
$$

First, we review some useful signal operations
Time shifting: $g(t-T)$ represents $g(t)$ time-shifted by T. If T is positive, the shift is to the right (delay). If T is negative, the shift is to the left.
Time scaling: If $g(t)$ is compressed in time by a factor a $(a>1)$, the resulting signal is $g(a t)$.
If $\alpha<a<1$, the scaling is expansion.
Time inversion (Time reversal)
: $g(-t)$ is the mirrow image of $g(t)$ about the vertical axis.

All the signals are plotted below

The tricky one would be $g(6-t)$.
There are two ways to think about it

$$
+: \text {.. inversion time shift, } T=6
$$

There are two ways to think about it
(1) $g(t) \xrightarrow{\text { time inversion time shift, } T=6}$
mirror image about the vertical axis
(2) $g(t) \xrightarrow{\text { time shift, } T=-6} g(t+6) \xrightarrow{\text { time inversion }} g(-t+6)$
shift to
the left by 6
(i. C

Recall that $\operatorname{oe}(a t) \xrightarrow{f} \frac{1}{|a|} \times\left(\frac{f}{a}\right)$.
Here, $a=-1$.
Therefore, $G_{1}(f)=\frac{1}{|-1|} G\left(\frac{f}{-1}\right)=\frac{1}{(2 \pi f)^{2}}\left(e^{-j 2 \pi f}+j 2 \pi f e^{-j 2 \pi f}-1\right)$
(c) Note that $g_{2}(t)=g(t-1)+g_{1}(t-1)$

$$
\left.\begin{array}{rl}
G_{2}(f) & =e^{-j 2 \pi f} G(f)+e^{-j 2 \pi f} G_{1}(f) \\
& =\frac{e^{-j \omega}}{\omega^{2}}\left(e^{j \omega}-j \omega e^{j \omega}-1+e^{-j \omega+j \omega e^{-j \omega}-1}\right) \\
& =\frac{e^{-j \omega}}{\omega^{2}}(2 \cos (\omega)-j \omega(2 j) \sin \omega-2
\end{array}\right)
$$

(d) Note that $g_{3}(t)=g(t-1)+g_{1}(t+1)$

$$
\begin{aligned}
& \Rightarrow \quad G_{3}(f)=e^{-j 2 \pi f} G(f)+e^{j 2 \pi f} G_{1}(f) \\
& =\frac{1}{\omega^{2}}\left(1-j \omega-e^{-j \omega}+1+j \omega-e^{j \omega}\right) \\
& \text { Recall that } \\
& \cos ^{2} A=\frac{1}{2}(1+\cos 2 A) \quad=\frac{1}{\omega^{2}}(2-2 \cos (\omega))=\frac{2}{\omega^{2}}(1-\cos \omega) \\
& \begin{aligned}
& 1-\sin ^{2} A=\frac{1}{2}+\frac{1}{2} \cos 2 A \\
& \Rightarrow \cos 2 A=1-2 \sin ^{2} A \quad
\end{aligned} \quad=\frac{2}{\omega^{2}} 2 \sin ^{2}\left(\frac{\omega}{2}\right)=\left(\frac{\sin \left(\frac{\omega}{2}\right)}{\omega / 2}\right)^{2}=\sin C^{2}\left(\frac{\omega}{2}\right)
\end{aligned}
$$

$$
1-\cos 2 A=2 \sin ^{2} A=\sin ^{2}(\pi f)
$$

(e) Note that $g_{4}(t)=g\left(t-\frac{1}{2}\right)+g_{1}\left(t+\frac{1}{2}\right)$.

$$
\begin{aligned}
& \Rightarrow G_{4}(f)=e^{-j \omega / 2} G(f)+e^{j \omega / 2} G_{1}(f) \\
&=e^{-j \omega / 2} \frac{1}{\omega^{2}}\left(e^{j \omega}-j \omega e^{j \omega}-1\right) \\
&+e^{j \omega / 2} \frac{1}{\omega^{2}}\left(e^{-j \omega}+j \omega e^{-j \omega}-1\right) \\
&=\frac{1}{\omega^{2}}\left(e^{j \frac{\omega}{2}}-j \omega e^{j \frac{\omega}{2}}-e^{-j \frac{\omega}{2}}+e^{-j \frac{\omega}{2}}+j \omega e^{-j \frac{\omega}{2}}-e^{j \frac{\omega}{2}}\right) \\
&=\frac{-j}{\omega}\left(e^{j \omega / 2}-e^{-j \omega / 2}\right)=\frac{(-j)}{\omega}(2 j) \sin (\omega / 2) \\
&=\sin (\omega / 2)=\operatorname{sinc}\left(\frac{\omega}{\omega}\right)=\sin c(\pi f)
\end{aligned}
$$

(f) Note that $g_{5}(t)=1.5 g\left(\frac{1}{2}(t-2)\right)$

$$
\begin{aligned}
\Rightarrow G_{5}(t) & =1.5 \times \frac{1}{1 / 2} G\left(\frac{t}{1 / 2}\right) e^{-j 2 \omega} \\
& =3 G(2 f) e^{-j}\left(e^{j 2 \omega}-j 2 \omega e^{j 2 \omega}-1\right) e^{-j 2 \omega} \\
& \left.=3 \times \frac{1}{(2 \pi 2 t)^{2}}\right) \\
& =\frac{3}{4 \omega^{2}}\left(1-2 j \omega-e^{-2 j \omega}\right) \\
& =\frac{3}{4(2 \pi t)^{2}}\left(1-j 4 \pi f-e^{-j 4 \pi t}\right)
\end{aligned}
$$

$$
x(t)=A_{C} M(t)
$$

(a)

$$
\begin{aligned}
& x(t)=A_{c} m(t) \\
& u(t)=x(t)+\sqrt{2} \cos (\overbrace{\left.\omega_{c} t\right)}^{f} \omega_{c}=2 \pi t_{c} \\
& v(t)=u^{2}(t)=\left(x(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
&=x^{2}(t)+2 \sqrt{2} \alpha(t) \cos \left(\omega_{c} t\right)+\underbrace{1+\cos \left(2 \omega_{c} t\right)}_{L^{2} \cos ^{2}\left(\omega_{c} t\right)} \\
&=\left(1+x^{2}(t)\right)+2 \sqrt{2} x(t) \cos \omega_{c} t+\cos \left(2 \omega_{c} t\right) \\
& 0
\end{aligned}
$$

Note 1: $x^{2}(t) \xrightarrow{\text { }} x(t) * x(f)$
So, $x^{2}(t)$ is bandlimited to $2 B$
Because $f_{c} \gg B$, the spectrum of $\alpha^{2}(t)$ will not be in the passband of the BPF which centers around f_{C}.
Note 2: The term $\cos \left(2 \omega_{c} t\right)$ is at frequency $2 \times f_{c}$ which again is outside the passbond.

$$
\begin{aligned}
y(t) & =B P F\{v(t)\} \\
& =2 \sqrt{2} \alpha(t) \cos \omega_{c} t \\
& =2 \sqrt{2} A_{c} m(t) \cos \omega_{c} t
\end{aligned}
$$

(b) As sump

$$
\begin{aligned}
& o e(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right) \\
& o(t) \rightarrow \underbrace{}_{v(t)} \rightarrow y^{I}(t)
\end{aligned}
$$

From the above figure,

$$
\begin{aligned}
& v(t)=\left(x(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
& =2 \cos ^{2}\left(\omega_{c} t\right)\left(A_{c} m(t)+1\right)^{2} \\
& =1+\cos \left(2 \omega_{l} t\right)(A_{c}^{2} \underbrace{m^{2}(t)}_{\text {spectrum }}+1+2 A_{c} \underbrace{m(t)}_{\text {spectrum }}) \\
& \text { is from } \\
& \text { is from } \\
& {[-2 B, 2 B] \quad[-B, B]} \\
& \text { PF } \quad g(t) \\
& =g(t)+g(t) \cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

Note: We know that $g(t)$ is band limited to $[-2 B, 2 B]$ because all of its terms are band limited to $[-2 B, 2 B]$. So, only some parts of it will pass through the LPF.
Note 2: $g(t) \cos \left(2 \omega_{c} t\right)$ is centered @ $2 f_{c}$ and therefore will not pass thought the L. PF.

$$
\begin{aligned}
y^{I}(t) & =\operatorname{LPF}\{v(t)\} \\
& =\operatorname{LPF}\{g(t)\} \\
& =1+2 A_{c} m(t)+\operatorname{LPF}\left\{A_{c}^{2} m^{2}(t)\right\}
\end{aligned}
$$

This term has spectrum beyond IW so, only a portion of it will pass through the LPF.
$y^{I}(t)$ is not proportional to $m(t)$.
Hence, this block diagram does not work as a demodulator.
(c) As sump

$$
x(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right) \text { as in part (b). }
$$

We then have

$$
\begin{aligned}
& v(t)=\left(x(t)+\sqrt{2} \sin \left(\omega_{c} t\right)\right)^{2} \\
&= 2\left(A_{c} m(t) \cos \left(\omega_{c} t\right)+\sin \left(\omega_{c} t\right)\right)^{2} \\
&= 2\left(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)\right. \\
&+A_{c} m(t) \cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right) \\
&\left.+\sin ^{2}\left(\omega_{c} t\right)\right) \\
&= 2\left(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)\right. \\
&\left.+\sin ^{2}\left(\omega_{c} t\right)\right) \\
&+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
&=\left.2\left(A_{c}^{2} m^{2}(t)-1\right) \cos ^{2}\left(\omega_{c} t\right)+1\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \text { LP } \\
&= 2+\left(A_{c}^{2} m^{2}(t)-1\right)\left(1+\cos \left(2 \omega_{c} t\right)\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
& y^{Q}(t)= 2+L P F\left\{A_{c}^{2} m^{2}(t)\right\}-1 \quad 0 \\
&= \text { LPG }\left\{A_{c}^{2} m^{2}(t)\right\}+1
\end{aligned}
$$

(d) Observe that
$y^{I}(t)-y^{Q}(t)=2 A_{c} m(t)$ which is the desired output from (b) from (c) of a success full DSB-SC de modulator.

Hence, the following block diagram would work:

Consider $x(t) \xrightarrow{\xi} X(f)$.
(a)

Let $y(t)=o^{*}(t)$. We want to find $Y(f)$.
First, recall that $x(f)=\int_{-\infty}^{\infty} \sigma e(t) e^{j 2 \pi f t} d t$.
Hence, $Y(f)=\int_{-\infty}^{\infty} e^{*}(t) e^{j 2 \pi f t} d t=(\underbrace{\left.\int_{-\infty}^{\infty} \pi(t) e^{-j 2 \pi f t} d t\right)^{*}}_{x(-f)}$

$$
=(x(-f))^{*}=x^{*}(-f)
$$

(b)

Let $y(t)=\operatorname{Re}\{\sigma(t)\}$.
From the hint, we first note that $\alpha(t)+\alpha^{*}(t)=2 \operatorname{Re}\{\alpha(t)\}$. Hence, $y(t)=\operatorname{Re}\{x(t)\}=\frac{1}{2}\left(x(t)+x^{*}(t)\right)$ and

$$
Y(f)=\frac{1}{2}\left(X(f)+\mathcal{F}\left\{x^{*}(t)\right\}\right)=\frac{1}{2}\left(X(f)+X^{*}(-f)\right)
$$

From part (a)
Remarks: (1) The expression for $Y(f)$ above is similar to $\operatorname{Re}\{x(f)\}$ but they are not the same.

Compare:

$$
\begin{aligned}
\operatorname{Re}\{x(f)\} & =\frac{1}{2}\left(x(f)+x^{*}(f)\right), \text { and } \\
Y(f)=\mathcal{F}\{\operatorname{Re}\{a(t)\}\} & =\frac{1}{2}\left(x(f)+x^{*}(-f)\right) .
\end{aligned}
$$

$$
Y(f)=\xi\{\operatorname{Re}\{a(t)\}\}=\frac{1}{2}(x(t)+x(-t)) \cdot \sigma
$$

(2) When $x(t)$ is real-valued,

$$
\begin{aligned}
& y(t)=\operatorname{Re}\{x(t)\}=x(t), \text { and } \\
& Y(f)=\xi\{y(t)\}=F\{x(t)\}=x(f)
\end{aligned}
$$

Let's check whether $Y(f)=x(f)$ if we use
Recall that for real-valued $\alpha(t)$,

$$
x(-f)=x^{*}(f)
$$

So, $Y(f)=\frac{1}{2}\left(x(f)+x^{*}(-t)\right)=\frac{1}{2}\left(x(t)+\left(x^{*}(f)\right)^{*}\right)$

$$
=x(t)
$$

(3) Let's try another check.

Because $y(t)$ is defined as $\operatorname{Re}\{x(t)\}$, we know that $y(t)$ will always be real-valued. Hance, it must also satisfy the conjugate symmetry property:

$$
Y(-f)=Y^{*}(f)
$$

so, let's try plugging " f " into our expression for $Y(f):$

$$
Y(f)=\frac{1}{2}\left(X(f)+X^{*}(-f)\right)
$$

This gives

$$
Y(-f)=\frac{1}{2}\left(x(-f)+x^{*}(f)\right)
$$

of course,

$$
Y^{*}(f)=\frac{1}{2}\left(x^{*}(f)+x(-f)\right)
$$

Therefore, $Y(-f)=Y^{*}(f)$ as expected.

$$
x_{b}(t) \xrightarrow{\frac{5}{b}} x_{b}(f)
$$

By the freq. -shift property of Fourier transform,

$$
\underbrace{e^{j 2 \pi f_{c} t} x_{b}(t)} \xrightarrow{\nrightarrow} x_{b}\left(f-f_{c}\right)
$$

call this $g(t)$. Then, $G(t)=x_{b}\left(t-f_{c}\right)$
Recall, from the previous problem that

$$
\operatorname{Re}\{g(t)\} \xrightarrow{\}} \frac{1}{2}\left(G(f)+G^{*}(-f)\right) .
$$

Note that $a_{p}(t)=\sqrt{2} \operatorname{Re}\{g(t)\}$.
Hence,

$$
\begin{aligned}
x_{p}(f) & =\sqrt{2} \times \frac{1}{2}\left(G(t)+G^{*}(-f)\right) \\
& =\frac{1}{\sqrt{2}}\left(x_{b}\left(f-f_{c}\right)+x_{b}^{*}\left(-f-f_{c}\right)\right)
\end{aligned}
$$

(b) By the freq.-shift property of $F T$,

$$
\begin{aligned}
x_{p}(t) e^{-j 2 \pi f_{c} t} \stackrel{\mathcal{F}}{\longrightarrow} & x_{p}\left(f-\left(-f_{c}\right)\right)=x_{p}\left(f+f_{c}\right) \\
& =\frac{1}{\sqrt{2}}\left(x_{b}\left(f+f_{c}-f_{c}\right)+x_{b}^{*}\left(-\left(f+f_{c}\right)-f_{c}\right)\right. \\
& =\frac{1}{\sqrt{2}}\left(x_{b}(f)+x_{b}^{*}\left(-\left(f+2 f_{c}\right)\right)\right.
\end{aligned}
$$

Therefore,

\[

\]

Problem 9

a.

$$
\begin{aligned}
P(f) & =\int_{-\infty}^{\infty} p(t) e^{-j 2 \pi f t} d t=\int_{0}^{T} A e^{-j 2 \pi f t} d t=\left.A \frac{1}{-j 2 \pi f} e^{-j 2 \pi f t}\right|_{0} ^{T} \\
& =A \frac{1}{-j 2 \pi f}\left(e^{-j 2 \pi f T}-1\right)=\frac{A}{j 2 \pi f}\left(1-e^{-j 2 \pi f T}\right)
\end{aligned}
$$

b. We start with $x(t)=\sum_{k=0}^{\ell-1} m_{k} p(t-k T) \xrightarrow{\mathcal{F}} X(f)=P(f) \sum_{k=0}^{\ell-1} m_{k} e^{-j 2 \pi f k T}$.

Hence,

$$
\begin{aligned}
X(f) & =P(f)\left(m_{0}+m_{1} e^{-j 1 \pi f T}+m_{2} e^{-j 2 \pi f k T}+m_{3} e^{-j 2 \pi f k T}\right) ; \ell=4 \\
& =\frac{A}{j 2 \pi f}(1-z)\left(m_{0}+m_{1} z+m_{2} z^{2}+m_{3} z^{3}\right) ; z=e^{-j 1 \pi f T} \\
& =\frac{A}{j 2 \pi f}(1-z)\left(1-z+z^{2}+z^{3}\right) \\
& =\frac{A}{j 2 \pi f}\left(1-2 z-2 z^{2}-z^{4}\right) \\
& =\frac{A}{j 2 \pi f}\left(1-2 e^{-j 1 \pi f T}-2 e^{-j 2 \pi f T}-e^{-j 4 \pi f T}\right)
\end{aligned}
$$

c. First, we find

$$
P(0)=\int_{-\infty}^{\infty} p(t) e^{-j 2 \pi t} d t=\int_{-\infty}^{\infty} p(t) d t=A T
$$

Then

$$
X(0)=P(0) \sum_{k=0}^{\ell-1} m_{k} e^{-j 2 \pi 0 k T}=P(0) \sum_{k=0}^{\ell-1} m_{k}=A T \sum_{k=0}^{\ell-1} m_{k}
$$

After plugging in the numbers, we have

$$
X(0)=2,4,4,2,4,0,8 \quad \times 10^{-6} \quad[\mathrm{~V} / \mathrm{Hz}]
$$

d. All the plots are shown on the next page.

(a) we know that

$$
1[|t| \leqslant a] \xrightarrow{F} 2 a \sin (2 \pi f a)
$$

So,

$$
1[|t| \leqslant a]=\int_{\uparrow}^{\infty} 2 a \operatorname{sinc}(2 \pi f a) e^{j 2 \pi t t} d t
$$

Inverse trans form
For $a>0$, we have

$$
\int_{-\infty}^{\infty} \sin c(2 \pi f a) e^{j 2 \pi f t} d f=\frac{1}{2 a} 1[|t| \leqslant a]
$$

Setting $t=0$ leads to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \sin c(2 \pi f a) d f=\frac{1}{2 a}=\frac{1}{2 \times \frac{\sqrt{5}}{2 \pi}}=\frac{\pi}{\sqrt{5}} \\
& 2 \pi a=\sqrt{5} \quad \Rightarrow a=\sqrt{5}
\end{aligned}
$$

Here, $2 \pi a=\sqrt{5} \Rightarrow a=\frac{\sqrt{5}}{2 \pi}$
(b) Note first that $2 \operatorname{sinc}(2 \pi f) \xrightarrow{\mathcal{F}^{-1}} 1[|t| \leqslant 1] \quad(a=1)$

By the time-shift property,

$$
e^{-j 2 \pi f t_{0}} 2 \sin c(2 \pi f) \xrightarrow{\mathcal{F}^{-1}} 1\left[\left|t-t_{0}\right| \leqslant 1\right]
$$

By Parseval's theorem

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(e^{-j 2 \pi f t_{1}} G_{1}(f)\right)\left(e^{-j 2 \pi f t_{L}} G_{L}(t)\right)^{*} d f= \\
=\int_{-\infty}^{\infty} g_{1}\left(t-t_{1}\right) g_{2}^{*}\left(t-t_{2}\right) d t
\end{gathered}
$$

Here, $g_{1}(t)=g_{2}(t)=1[|t| \leqslant 1\rfloor$

$$
t_{1}=2, \quad t_{2}=5
$$

No overlap, so the integral is 0 .

Alternatively, we con first simplify the integral to

$$
\int_{-\infty}^{\infty} e^{j 2 \pi t\left(t_{l}-t_{1}\right)} G_{1}(f) G_{2}(t) d f
$$

This is then the inverse Fourier transform of $G_{1}(t) G_{2}(t)$ evaluated at $t=\left(t_{2}-t_{1}\right)$.

The inverse Fourier fionsform is given by $g_{1}(t) * g_{2}(t)$.
Again, $g_{1}(t)=g_{2}(t)=1[|t| \leqslant 1]$.
So, $g_{1}(t) * g_{2}(t)=$

Here, $t_{L}-t_{1}=5-2=3$. So, the integral is 0 .
(c) $\sin c(\underbrace{2 \pi a f}) \xrightarrow[\mathcal{F}^{-1}]{\frac{1}{2 a}} 1[|t| \leqslant a]$.

$$
=c
$$

\Downarrow

$$
\begin{aligned}
& a=\frac{c}{2 \pi} \\
& \sin c(c f) \mathcal{F}^{-1} \\
& \frac{\pi}{c} 1\left[|t| \leqslant \frac{c}{2 \pi}\right]
\end{aligned}
$$

Again, by Parseral's theorem,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \sin c\left(c_{1} f\right) \sin ^{*}\left(c_{2} f\right) d f & =\int_{-\infty}^{\infty} \frac{\pi}{c_{1}}\left\{\left[|t| \leqslant \frac{c_{1}}{2 \pi}\right] \frac{\pi}{c_{2}} 1\left[|t| \leqslant \frac{c_{2}}{2 \pi}\right] d t\right. \\
& =\frac{\pi^{2}}{c_{1} c_{2}} \times \min \left\{\frac{\left.c_{1}, c_{2}\right\}}{\pi}=\frac{\pi}{c_{1} c_{2}} \min \left\{c_{1}, c_{2}\right\} .\right.
\end{aligned}
$$

$$
=\frac{\pi^{2}}{c_{1} c_{2}} \times \min \frac{\left\{c_{1}, c_{2}\right\}}{\mathbb{K}}=\frac{\pi}{c_{1} c_{2}} \min \left\{c_{1}, c_{2}\right\} .
$$

Here, $\quad c_{1}=\sqrt{5}, \quad c_{2}=\sqrt{7}$.
So, the integral is $\frac{\pi}{\sqrt{5} \sqrt{7}} \sqrt{\sqrt{5}}=\frac{\pi}{\sqrt{7}}$
Alternatively, the integral is the inverse Fourier transform of $\sin c\left(c_{1} f\right) \sin c\left(c_{2} f\right)$ evaluated at $t=0$.
(d)

$$
\begin{aligned}
& \sin c(c f) \xrightarrow{F^{-1}} \frac{\pi}{c} 1\left[|t| \leqslant \frac{c}{2 \pi}\right] \\
& \stackrel{\downarrow}{ }+\pi \\
& \sin c(\pi f) \xrightarrow{\mathcal{F}^{-1}} 1\left[|t| \leqslant \frac{1}{2}\right] \\
& \sin c\left(\pi\left(f-f_{0}\right)\right) \xrightarrow{J^{-1}} e^{j 2 \pi f_{0} t},\left[|t| \leqslant \frac{1}{2}\right]
\end{aligned}
$$

By Parseval's theorem, the integral is the same as

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{j 2 \pi f_{1} t} 1\left[|t| \leqslant \frac{1}{L}\right] e^{-j 2 \pi f_{L} t} 1\left[|t| \leqslant \frac{1}{c}\right] d t \\
& =\int_{-1 / 2}^{1 / 2} e^{j 2 \pi\left(f_{1}-f_{L}\right) t} d t=\left.\frac{1}{j 2 \pi\left(t_{1}-f_{L}\right)} e^{j 2 \pi\left(f_{1}-t_{L}\right) t}\right|_{-1 / 2} ^{1 / 2} \\
& =\frac{1}{j 2 \pi\left(f_{1}-f_{L}\right)} e^{j 2 \pi\left(f_{1}-f_{L}\right) \frac{1}{2}}-e^{-j L \pi\left(f_{1}-f_{L}\right) \frac{1}{L}} \\
& =\frac{\sin \left(\pi\left(f_{1}-f_{L}\right)\right)}{\pi\left(f_{1}-f_{L}\right)}=\operatorname{sinc}\left(\pi\left(f_{1}-f_{c}\right)\right)
\end{aligned}
$$

If $f_{1}-f_{L}$ is an integer, then the integral is 0 . Here, $f_{1}-f_{2}=5-\frac{7}{2}=\frac{3}{2}$.

So, the integral is $\frac{\sin \left(\frac{3}{2} \pi\right)}{\frac{3}{2} \pi}=\frac{-1}{\frac{3}{2} \pi}=-\frac{2}{3 \pi}$.

