ECS455: Formula Sheet?

- Closed book. Closed note.
- There is a sheet available in the HW box.
- Each one of you can fill in any text/formula that you want.
 - Max. 50 symbols (or characters).
 - Have to fit inside your own box.
- No figure/diagram

ECS455 Formula Sheet

	EC3455 Formula Sheet
ID3	
035	
074	
075	
118	
126	
167	
170	
190	
307	
356	
491	
539	
562	
604	
702	
737	
740	
794	

These formulas are provided:

 $2\cos^2 x = 1 + \cos(2x)$

 $2\sin^2 x = 1 - \cos(2x)$

 $G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft}dt$

IDFT: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \exp\left(jnk \frac{2\pi}{N}\right)$

DFT: $X[k] = \sum_{n=1}^{N-1} x[n] \exp\left(-jnk\frac{2\pi}{N}\right)$

 $g(t)\cos(2\pi f_c t) \stackrel{\mathcal{F}}{\rightleftharpoons} \frac{1}{2}G(f-f_c) + \frac{1}{2}G(f+f_c)$

 $g(t-t_0) \stackrel{\mathcal{F}}{\rightleftharpoons} e^{-j2\pi f t_0} G(f)$ $e^{j2\pi f_0 t} g(t) \stackrel{\mathcal{F}}{\rightleftharpoons} G(f - f_0)$

 $\cos(2\pi f_c t + \theta) \xrightarrow{\mathcal{F}} \frac{1}{2} \delta(f - f_c) e^{j\theta} + \frac{1}{2} \delta(f + f_c) e^{-j\theta}$