ECS 455: In-Class Exercise # 14

Instructions

- 1. Separate into groups of no more than three persons.
- 2. The group cannot be the same as any of your former groups in this class.
- 3. Only one submission is needed for each group.
- 4. *Write down all the steps* that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 5. Do not panic.

Date: 0 3 / 0 5 /2017				
Name	ID	ID (last 3 digits)		
Prapun	5	5	5	

In a (synchronous) CDMA system, suppose there are only two users. The codes for user 1 and user 2 are $\underline{\mathbf{c}}^{(1)} = \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \end{bmatrix}$ and $\underline{\mathbf{c}}^{(2)} = \begin{bmatrix} -1 & -1 & 1 & 1 & -1 \end{bmatrix}$, respectively.

1. Find *a*.

This is CDMA. So we know that
$$\leq^{(1)} \perp \leq^{(2)}$$
.
Here, $\langle \leq^{(1)}, \leq^{(2)} \rangle = (1)(-1)+(-1)(-1)+(1)(-1)+(1)(1)+(-1)(-1)+(-1)(a)$
 $= -1 + 1 - 1 + 1 - 1 - a$
 $= -1 - a$.
For orthogonality, we need $\langle \leq^{(1)}, \leq^{(2)} \rangle = 0$.
 $\Leftrightarrow -1 - a = 0$
 $\Leftrightarrow a = -1$

2. At the receiver, suppose we receive $\mathbf{r} = \begin{bmatrix} 5 & -1 & 5 & 1 & 5 & -1 \end{bmatrix}$. Find the messages s_1 and s_2 . Ignore the noise and the fading effect.

$$\hat{s}_{1} = \frac{1}{N} \langle E_{j} \subseteq^{(1)} \rangle = \frac{1}{6} \left((5)(1) + (-1)(-1) + (5)(1) + (1)(1) + (5)(1) + (-1)(-1) \right)$$

This should be $\langle \subseteq^{(1)} \subseteq^{(1)} \rangle = 1^{2} + (-1)^{2} + 1^{2} + 1^{2} + 1^{2} + (-1)^{2} = N \times 1^{2} = N$
length of the code

$$=\frac{1}{6}\left(5+1+5+1+5+1\right)=\frac{11}{6}=3$$

$$\hat{\sigma}_{2} = \frac{1}{6} \langle \underline{r}, \underline{c}^{(2)} \rangle = \frac{1}{6} ((5)(-1) + (-1)(-1) + (5)(-1) + (1)(1) + (5)(-1) + (-1)(-1)))$$

$$\langle \underline{c}^{(2)}, \underline{c}^{(2)} \rangle$$

$$= \frac{1}{6} (-5 + 1 - 5 + 1 - 5 + 1) = -\frac{16}{6} = -2$$